Let \(f(z) \frac{d^n}{dz^n}(1/f(z)) = P_n(z) \) be a monic polynomial having \(n \) distinct real roots, for \(n = 0, 1, \ldots \). Assume also that \(f(\pm \infty) = \infty \). Note that \(f(z) \) is an entire function of finite type.

Claim: For \(q \) and \(m \) nonnegative integers,

\[
P(z) = \sum_{\gamma} \binom{q}{\gamma} \frac{m!}{(m-\gamma)!} z^{m-\gamma} P_{q-\gamma}(z),
\]

has \(q + m \) distinct real roots if \(q > m \), and \(2q \) distinct nonzero real roots if \(q \leq m \).

Remark: This generalizes Problem 5681 of the AMM [P], where this was proposed for \(P_n(z) = H_n(z) \), the Hermite polynomials.

Proof: After rewriting the sum in (1),

\[
P(z) = f(z) \frac{d^q}{dz^q}(z^m/f(z)),
\]

using \(z^m/f(z) \to 0 \) when \(z \to \pm \infty \), Rolle’s theorem and induction on \(q \), the claim follows. \(\square \)

Reference: