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Abstract. We study inexact Rayleigh quotient iteration (IRQI) for computing a simple interior eigen-
pair of the generalized eigenvalue problem Av ¼ λBv, providing new insights into a special type of precondi-
tioners with “tuning” for the efficient iterative solution of the shifted linear systems that arise in this algorithm.
We first give a new convergence analysis of IRQI, showing that locally cubic and quadratic convergence can be
achieved for Hermitian and non-Hermitian problems, respectively, if the shifted linear systems are solved by a
generic Krylov subspace method with a tuned preconditioner to a reasonably small fixed tolerance. We then
refine the study by Freitag and Spence [Linear Algebra Appl., 428 (2008), pp. 2049–2060] on the equivalence of
the inner solves of IRQI and single-vector Jacobi–Davidson method where a full orthogonalization method
with a tuned preconditioner is used as the inner solver. We also provide some new perspectives on the tuning
strategy, showing that tuning is essentially needed only in the first inner iteration in the non-Hermitian case.
Based on this observation, we propose a flexible GMRES algorithm with a special configuration in the first
inner step, and show that this method is as efficient as GMRES with the tuned preconditioner.
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1. Introduction. Rayleigh quotient iteration (RQI) is a classical algorithm for
computing a simple eigenpair of a matrix A or a matrix pencil ðA;BÞ. This algorithm
has been extensively studied for more than fifty years, and is shown to exhibit locally
cubic and quadratic convergence rates, respectively, for Hermitian and non-Hermitian
problems; see [21], [29], and the references therein. In recent years, there has been con-
siderable interest in inexact eigenvalue algorithms, including inexact Rayleigh quotient
iteration (IRQI), with inner-outer iterations for computing eigenvalues of matrices
around some specified shift, especially those lying in the interior of the spectrum to
which regular Krylov subspace methods fail to provide rapid approximations. In each
outer iteration, a shift-invert matrix-vector product is computed inexactly through the
iterative solution (inner iteration) of the corresponding linear system. Inexact eigenva-
lue algorithms are of significant use if the matrices are too large for exact shift-invert
matrix-vector products to be affordable, or if the matrices cannot be formed explicitly.
In this paper, we provide some new insights into a special type of preconditioners with
“tuning” for the efficient iterative solution (inner solves) of the shifted linear system of
equations that arises in IRQI for computing a simple interior eigenpair of the generalized
eigenvalue problem Av ¼ λBv.

The original motivation of tuning the preconditioner is to resolve the difficulties
arising in the preconditioned inner solves for inexact inverse iteration and IRQI.
Specifically, a good preconditioner in the usual setting of solving linear systems generally
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does not yield rapid improvement of eigenvector approximation as the inner iteration
proceeds. This problem is discussed by Simoncini and Eldén [24], where it is shown that
faster improvement of eigenvector approximation in initial inner iterations of IRQI can
be achieved by properly tuning the right-hand side of the shifted linear system. This idea
is extended in [2], [4] and then improved in [9], [10] by Spence and his collaborators,
where tuning the preconditioner is shown to be more effective than tuning the right-
hand side, since the former approach does not change the linear systems to be solved
and thus will not compromise the best possible convergence rate of outer iterations. The
superior performance of the tuned preconditioner over the regular (untuned) counter-
part has been established in these references, based on the convergence theory of Krylov
subspace minimal residual methods and the fact that the right-hand side of the precon-
ditioned system with tuning is an approximate eigenvector associated with the smallest
(in magnitude) eigenvalue of the preconditioned coefficient matrix. In addition, the ad-
vantage of using a tuned preconditioner for the inner solves becomes more pronounced
as the outer iteration proceeds and converges toward the desired eigenpair.

This paper is a continuation of the investigation of tuning the preconditioner, in the
contextof IRQI, for efficientKrylov subspace inner solves.Weprovide insights into tuning
in three aspects. First, we give a new local convergence analysis of IRQI, showing under
appropriate assumptions that this algorithm demonstrates cubic and quadratic asymp-
totic convergence rates, respectively, for Hermitian and non-Hermitian problems, if the
shifted linear systems are solved by a generic Krylov subspace method with a tuned pre-
conditioner to a reasonably small fixed tolerance.This result is an improvement of existing
local convergence analyses of IRQI [2], [4], [8], [9], [10], [18], [24], [27], [30], obtained in-
dependently of the inner solver, where it is shown that these asymptotic convergence rates
can be achieved if a proper decreasing sequence of tolerances is used for the inner solves.
Second, we provide a refined equivalence result of the inner solves of the single-vector
Jacobi–Davidson (JD) method [1] and IRQI. We show that given the same outer iterate
x, the two methods deliver the same sequence of inner iterates (up to a constant scaling
factor) if the two inner solves are done by the full orthogonalizationmethod (FOM)with a
tunedpreconditionerQ satisfyingQx ¼ Bx, independent of the specific construction ofQ.
Finally, we give some new perspectives on the success of tuning the preconditioner and
propose an approach to simplify the use of tuning. We show by both analysis and experi-
ments that tuning is necessary only in the first inner iteration, and that a flexible GMRES
algorithm with a special configuration in the first step is as competitive in efficiency as
GMRES with a tuned preconditioner; for details on GMRES and flexible GMRES
(FGMRES) as well as MINRES, which is mentioned later, see, e.g., [22] or [25].

Since tuning the preconditioner for the inner solves of IRQI bears some close
connections to the single-vector JD method, this paper in fact also provides a justifica-
tion of the use of JD. In practice, to enhance the robustness of the convergence of JD
with random initial outer iterates, and to speed up the actual convergence speed in the
presence of large errors of inner solves, the regular JD method with subspace accelera-
tion needs to be used. The investigation of tuning in this paper forms a preliminary step
toward complete understanding of JD, especially during its asymptotic convergence
phase. The nonlocal convergence behavior and the inner solves of JD with subspace ac-
celeration prior to the asymptotic convergence phase are out of the scope of this paper.

The paper is organized as follows. In section 2, we describe IRQI and outline pre-
liminary results needed to study this algorithm. In section 3, we show that locally cubic
and quadratic convergence of IRQI can be achieved for Hermitian and non-Hermitian
problems, respectively, if the shifted linear systems are solved by a generic Krylov
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subspace method with a tuned preconditioner to a moderately small fixed tolerance. We
refine the equivalence results of the inner solves of IRQI and single-vector JD in section 4.
In section 5, we give some new perspectives on tuning, propose an FGMRES algorithm
to simplify the use of tuning, and show how this FGMRES solve is connected to a mod-
ified correction equation of single-vector JD. Numerical experiments are given in
section 6 to validate the new convergence analysis and the equivalence results—to show
that IRQI with tuning for the inner solve is superior to the inexact Arnoldi method for
the eigenvalue problem under discussion, and to demonstrate the effectiveness of the
alternative inner solver.

2. Preliminaries. We are interested in computing a simple eigenpair of a regular
matrix pencil ðA;BÞ by IRQI. Consider the generalized eigenvalue problem

Av ¼ λBv;ð2:1Þ

where A, B ∈ Cn×n, v ∈ Cn, and λ ∈ C. To simplify the analysis, we assume that B is
nonsingular and there exist an invertible matrix of eigenvectors V ¼ ½v1; v2; : : : ; vn� and
a diagonal matrix of eigenvalues Λ ¼ diagðλ1; λ2; : : : ; λnÞ so that AV ¼ BVΛ. This
decomposition can also be written as U �A ¼ ΛU �B, where

U � ¼ V−1B−1 ¼ ½u1; u2; : : : ; un��

is the matrix of left eigenvectors. The left and right eigenvectors are connected by the
relation U �BV ¼ I .

The classification of (2.1) is as follows [1]: if A and B are Hermitian, and if A, B, or
αAþ βB is positive definite for some scalars α and β, (2.1) is known as the generalized
Hermitian eigenvalue problem (GHEP); otherwise it is a generalized non-Hermitian
eigenvalue problem (GNHEP). By redefining matrices, all GHEPs can be cast into
the standard form (2.1) with Hermitian positive definite B. In this case, it is well known
that U ¼ V and hence the eigenvectors are orthogonal with respect to the B inner
product; in addition, all eigenvalues λj are real. We assume in this paper that GHEPs
are of this standard form. In the following, we simply refer to GHEPs and GNHEPs as
Hermitian and non-Hermitian problems, respectively.

Algorithm 2.1 describes a typical version of (one-sided) IRQI to find a simple right
eigenpair of a matrix pencil ðA;BÞ.

ALGORITHM 2.1. INEXACT RAYLEIGH QUOTIENT ITERATION (IRQI).
Given xð0Þ with xð0Þ normalized with respect to the B (Hermitian case)

or B�B (non-Hermitian case) inner product.
For i ¼ 0; 1; 2; : : : , until convergence

1. Compute the Rayleigh quotient

σðiÞ ¼ wðiÞ�AxðiÞ

wðiÞ�BxðiÞ
;

where wðiÞ ¼ xðiÞ (Hermitian case), or wðiÞ ¼ BxðiÞ (non-Hermitian case).
2. Choose τðiÞ and solve ðA− σðiÞBÞyðiÞ ¼ BxðiÞ inexactly such that

kBxðiÞ − ðA− σðiÞBÞyðiÞk
kBxðiÞk ≤ τðiÞ.
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3. Update xðiþ1Þ ¼ hðiÞyðiÞ with some scalar hðiÞ such that xðiþ1Þ is normalized with
respect to the B (Hermitian case) or B�B (non-Hermitian case) inner product.

4. Test for convergence.
End For

Suppose that ðλ1; v1Þ is the desired (right) eigenpair of ðA;BÞ. To analyze IRQI, we
decompose the outer iterate xðiÞ as

xðiÞ ¼ γðiÞðcðiÞv1 þ sðiÞzðiÞÞ;ð2:2Þ

where γðiÞ ¼ kU �BxðiÞk, zðiÞ ¼ Ve
ðiÞ
z ∈ spanfv2; v3; : : : ; vngwith eðiÞz ⊥ e1 and keðiÞz k ¼ 1.

Therefore U �BxðiÞ ¼ γðiÞðcðiÞe1 þ sðiÞeðiÞz Þ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcðiÞj2 þ jsðiÞj2

q
¼ kcðiÞe1 þ sðiÞeðiÞz k ¼ kU �BxðiÞk ∕ γðiÞ ¼ 1.

Here sðiÞ and cðiÞ are generalizations of the sine and cosine of ∠ðxðiÞ; v1Þ. Let
F ¼ ðI − e1e

T
1 ÞU �B such thatFv1 ¼ 0 andFvj ¼ ej, for j ¼ 2; 3; : : : ; n. The generalized

tangent of ∠ðxðiÞ; v1Þ can be defined as

gtan ∠ ðxðiÞ; v1Þ≡ tðiÞ ¼ jsðiÞj
jcðiÞj ¼

kγðiÞsðiÞU �BzðiÞk
kγðiÞcðiÞe1k

¼ kFxðiÞk
kðU �B − FÞxðiÞk ;ð2:3Þ

which measures the approximation of xðiÞ to the desired eigenvector v1. For standard
Hermitian problems where B ¼ I , tðiÞ ¼ gtan ∠ ðxðiÞ; v1Þ ¼ tan∠ðxðiÞ; v1Þ. For small
∠ðxðiÞ; v1Þ, we have OðtðiÞÞ ¼ OðsðiÞÞ as cðiÞ ≈ 1 and tðiÞ ≈ sðiÞ.

In our analysis, we will use the fact shown below that the Rayleigh quotient ap-
proaches the corresponding eigenvalue as OðjsðiÞj2Þ in the Hermitian case, and as
OðjsðiÞjÞ in the non-Hermitian case. In fact, for Hermitian problems with positive definite
B, the Rayleigh quotient

σðiÞ ¼ xðiÞ�AxðiÞ

xðiÞ�BxðiÞ

satisfies

σðiÞ − λ1 ¼
xðiÞ�ðA− λ1BÞxðiÞ

xðiÞ�BxðiÞ

¼ ðc̄ðiÞv�1 þ s̄ðiÞzðiÞ�ÞðA− λ1BÞðcðiÞv1 þ sðiÞzðiÞÞ
ðc̄ðiÞv�1 þ s̄ðiÞzðiÞ�ÞBðcðiÞv1 þ sðiÞzðiÞÞ

¼ jsðiÞj2zðiÞ�ðA− λ1BÞzðiÞ
jcðiÞj2 þ jsðiÞj2 ¼ ðeðiÞ�z ΛeðiÞz − λ1ÞjsðiÞj2:ð2:4Þ

For non-Hermitian problems, the generalized Rayleigh quotient is

σðiÞ ¼ wðiÞ�AxðiÞ

wðiÞ�BxðiÞ

with some vector wðiÞ; see, e.g., [16]. For one-sided RQI for computing only the right
eigenpair, a common choice is wðiÞ ¼ BxðiÞ (see [13], [14]), and therefore
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σðiÞ − λ1 ¼
xðiÞ�B�ðA− λ1BÞxðiÞ

xðiÞ�B�BxðiÞ

¼ sðiÞðc̄ðiÞv�1 þ s̄ðiÞzðiÞ�ÞB�ðA− λ1BÞzðiÞ
ðc̄ðiÞv�1 þ s̄ðiÞzðiÞ�ÞB�BðcðiÞv1 þ sðiÞzðiÞÞ

¼ hðΛ− λ1I ÞeðiÞz ; cðiÞe1 þ sðiÞeðiÞz iV �B�BV

kcðiÞe1 þ sðiÞeðiÞz kV �B�BV

sðiÞ;ð2:5Þ

where for positive definite M , hu; viM ¼ v�Mu is an inner product on Cn.
The corresponding eigenvalue residual is

rðiÞ ¼ AxðiÞ − σðiÞBxðiÞ

¼ γðiÞðA− λ1BÞðcðiÞv1 þ sðiÞzðiÞÞ− ðσðiÞ − λ1ÞBxðiÞ

¼ γðiÞsðiÞBV ðΛ− λ1I ÞeðiÞz − ðσðiÞ − λ1ÞBxðiÞ:ð2:6Þ

As the norm of γðiÞsðiÞBV ðΛ− λ1I ÞeðiÞz is proportional to sðiÞ, it follows from (2.4) and
(2.5) that krðiÞk ¼ OðjsðiÞjÞ for both Hermitian and non-Hermitian problems. In addi-
tion, it follows from the definition of the Rayleigh quotient that rðiÞ ⊥ xðiÞ in the
Hermitian case and rðiÞ ⊥ BxðiÞ in the non-Hermitian case.

From here through the end of the paper, we focus on the behavior of the inner solve
—i.e., the solution of step 2 of Algorithm 2.1—in a given outer iteration, and we drop the
superscript (i) denoting the number of outer iterations, unless otherwise stated.

3. Some local convergence analysis of IRQI. In this section, we present some
local convergence analysis of IRQI where Krylov subspace methods are used for approxi-
mately solving the linear system arising in the outer iteration (step 2 of Algorithm 2.1).
Specifically, we first show that if an unpreconditioned Krylov subspace method is used
in IRQI for standard Hermitian and non-Hermitian problems, locally cubic or quadratic
convergence of the outer iteration can be achieved if a fixed constantmoderately smaller
than 1 is used as the relative tolerance of the inner solve. We then show that this
result also holds for IRQI for generalized eigenvalue problems if the inner solve is done
by a preconditioned Krylov subspace method with a special type of preconditioner with
“tuning.”

From now on, for simplicity, we omit the word “local” for the description of conver-
gence whenever there is no ambiguity. We begin with the following theorem on Krylov
subspace iterative solution of a linear system My ¼ b, showing how the approximate
solution ym behaves if the right-hand side b is an approximate eigenvector corresponding
to the smallest (in magnitude) eigenvalue of the coefficient matrixM . We will show how
this theorem is used to study the shifted linear systems with a tuned preconditioner
arising in IRQI and how it helps establish the new convergence analysis.

THEOREM 3.1. Suppose that an unpreconditioned Krylov subspace method with zero
starting vector y0 ¼ 0 is used to solve My ¼ b. Let ðλMi ; wiÞ be the eigenpairs of
M ¼ WΛMW−1 with eigenvalues ordered as 0 < jλM1 j < jλM2 j ≤ · · ·≤ jλMn j. Let
b ¼ γðcw1 þ szÞ with jsj < jcj, where γ ¼ kW−1bk and z ∈ spanfw2; w3; : : : ; wng such
that ez ¼ W−1z is a unit vector orthogonal to e1. Let ym be an approximate solution in
the Krylov subspace KmðM; bÞ, rm ¼ b−Mym ¼ pmðMÞb be the associated linear
residual, where pmðχÞ ¼ 1− χqm−1ðχÞ (with pmð0Þ ¼ 1) is the corresponding residual
polynomial of degree no larger than m (note in particular that p0ðχÞ≡ 1),
t0 ¼ jsj ∕ jcj ¼ gtan ∠ ðb;w1Þ, and tm ¼ gtan ∠ ðym;w1Þ. Let
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αm ¼ kΛ−1
M ðI − pmðΛM ÞÞezk;ð3:1Þ

C 0 ∈ ð0; 1Þ, and κðW Þ be the condition number of W (note in particular that κðW Þ ¼ 1
for Hermitian M ). If the relative residual norm krmk ∕ kbk ≤ jcjð1− C 0Þ ∕ κðW Þ, then

tm ≤
jλM1 j
C 0

αmt0:ð3:2Þ

Proof. The proof follows the lines of that of Theorem 4.1 in [24]. Note that
y1 ∈ K1ðM; bÞ ¼ spanfbg is a multiple of b if a zero starting vector y0 ¼ 0 is used
for this linear solve. It follows that

ym ¼ qm−1ðMÞb ¼ γW ðcqm−1ðλM1 Þe1 þ sqm−1ðΛM ÞezÞ;

and therefore gtan ∠ ðym;w1Þ is

tm ¼ ksqm−1ðΛM Þezk
kcqm−1ðλM1 Þe1k

¼ kΛ−1
M ðI − pmðΛM ÞÞezk

jðλM1 Þ−1ð1− pmðλM1 ÞÞj
jsj
jcj ¼

jλM1 j
j1− pmðλM1 Þjαmt0;ð3:3Þ

where αm ¼ kΛ−1
M ðI − pmðΛM ÞÞezk satisfies

min
2≤i≤n

j1− pmðλMi Þj
jλMi j ≤ αm ≤ max

2≤i≤n

j1− pmðλMi Þj
jλMi j :ð3:4Þ

Formula (3.3) shows that the behavior of tm is determined by jλM1 j ∕ j1− pmðλM1 Þj and
αm, both of which involve the residual polynomial pmðχÞ.

To analyze jλM1 j ∕ j1− pmðλM1 Þj, note that the residual vector

rm ¼ pmðM Þb ¼ γpmðMÞW ðce1 þ sezÞ ¼ γW ðcpmðλM1 Þe1 þ spmðΛM ÞezÞ:ð3:5Þ

It follows that the relative residual norm

kpmðMÞbk
kbk ¼ kW ðcpmðλM1 Þe1 þ spmðΛM ÞezÞk

kW ðce1 þ sezÞk

≥
σminðW Þðjcj2jpmðλM1 Þj2 þ jsj2kpmðΛM Þezk2Þ12

kWk >
jcjjpmðλM1 Þj

κðW Þ :ð3:6Þ

Thus, if krmk ∕ kbk ≤ jcjð1− C 0Þ∕ κðW Þ with C0 ∈ ð0; 1Þ, then jpmðλM1 Þj < 1− C0, and

tm ¼ jλM1 j
j1− pmðλM1 Þjαmt0 ≤

jλM1 j
j1− jpmðλM1 Þjjαmt0 ≤

jλM1 j
C 0

αmt0;ð3:7Þ

which completes the proof. ▯
Theorem 3.1 shows that tm ∕ t0 is effectively bounded by αmjλM1 j if a constant mod-

erately smaller than 1 ∕ κðW Þ is used as the relative tolerance for the Krylov subspace
linear solve. For instance, if krmk ∕ kbk ≤ jcjð1− C 0Þ∕ κðW Þ ¼ 0.01 ∕ κðW Þ, then
C 0 ≈ 0.99, and tm ∕ t0 ⪅ αmjλM1 j.

To analyze αm, consider from (3.5) the components of rm in spanfw2; : : : ; wng,
namely, γsWpmðΛM Þez, and the corresponding components γsWp0ðΛM Þez of r0 ¼ b.
If the former is not considerably larger than the latter (i.e., if kpmðΛM Þezk is not much
larger than kp0ðΛM Þezk ¼ kezk ¼ 1), then
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αm ¼ kΛ−1
M ðI − pmðΛM ÞÞezk ≤ kΛ−1

M ezk þ kΛ−1
M pmðΛM Þezk

is a moderate multiple of kΛ−1
M ezk. Therefore, gtan ∠ ðym;w1Þ ¼ tm is a moderate multi-

ple of gtan ∠ ðy�; w1Þ ¼ jλM1 jkΛ−1
M ezkt0, where y� ¼ M−1b is the exact solution of

My ¼ b. In practice, we may assume that krmk ¼ kpmðM Þbk → 0 asm → n, and there-
fore kpmðΛM Þezk → 0. It is thus reasonable to expect that kpmðΛM Þezk is not much lar-
ger than kezk ¼ 1, and of course it will eventually be smaller than 1. It then follows that
gtan ∠ ðym;w1Þ is a moderate multiple of gtan ∠ ðy�; w1Þ if the relative residual norm
krmk ∕ kbk is moderately small (assuming that the eigenvector matrix of M is not
ill-conditioned).

Theorem 3.1 can be used to study the convergence of IRQI. We will first apply this
theorem to study IRQI for standard eigenvalue problems in Corollary 3.3 below by let-
ting M ¼ ðA− σI Þ, b ¼ x. In Propositions 3.6 and 3.7 and Theorem 3.8, in particular,
M and b correspond to the preconditioned coefficient matrix and right-hand side, re-
spectively, of the linear systems arising in IRQI. In preparation for Corollary 3.3
and for use later on in the paper, we first recall that for a very small angle θ, sin θ,
θ, and tan θ are very close to each other.

PROPOSITION 3.2. For any θ ≪ 1, there exist constants C 2 and C3 slightly smaller
and larger than 1, respectively, such that C 2θ ≤ sin θ ≤ θ ≤ tan θ ≤ C 3θ.

COROLLARY 3.3. Suppose that Algorithm 2.1 is used to compute a simple eigenpair of
a diagonalizable matrix A ¼ WΛAW

−1, and an unpreconditioned Krylov subspace
method with a zero starting vector is used to solve ðA− σI Þy ¼ x. Let ym be the approx-
imate solution in the mth inner iteration, rm ¼ x− ðA− σI Þym be the residual vector,
C 1 be a moderate constant, and τ be a constant moderately smaller than 1 ∕ κðW Þ. If
αm ≤ C 1, and τ is used as the relative tolerance for the inner solve (e.g., krmk ∕ kxk ≤
τ ¼ 0.01∕ κðW Þ needs to be satisfied), then the convergence of Algorithm 2.1 is cubic and
quadratic for Hermitian and non-Hermitian A, respectively.

Proof. For M ¼ A− σI , note from (2.4) and (2.5) that the eigenvalue of smallest
magnitude λM1 ¼ λA1 − σ is of the order Oðjsj2Þ for Hermitian A and OðsÞ for non-
Hermitian A. If krmk ∕ kxk ≤ τ, then tm ⪅ αmjλM1 jt0 ≤ C 1jλM1 jjsj ∕ jcj ¼ C 1jðλ1 − σÞtj,
which is on the order of Oðt3Þ or Oðt2Þ (see (2.4) and (2.5)). The cubic and quadratic
convergence of IRQI is thus established. ▯

Assuming that αm (defined in (3.1)) is bounded by a modest constant, Corollary 3.3
shows that the convergence of IRQI is not obviously compromised as long as the shifted
linear system is solved to a tolerance moderately smaller than the reciprocal of the con-
dition number of the eigenvector matrix of A. In particular, if kpmðΛM Þezk is not con-
siderably larger than 1, and hence αm is a small multiple of kΛ−1

M ezk, then the
convergence of IRQI is almost the same as exact RQI. This observation explains
why, to achieve full convergence of IRQI, it is generally enough to solve the shifted linear
systems by Krylov subspace solvers to a moderate accuracy. Although we have no proof
of this fact, we observed in practice that this assumption of the uniform boundedness
seems valid. Specifically, in the ith outer iteration, let αðiÞ

m� be the value of αm in the inner
iteration step, where the tolerance of the inner iteration solve is satisfied for the first
time. We found from all numerical tests that αðiÞ

m� is almost a constant as the outer itera-
tion proceeds, if the fixed tolerance for inner solves is small, and it tends to increase
mildly (much less rapidly than Oð1 ∕ sðiÞÞ) and is thus practically uniformly bounded
by a moderate constant if the fixed tolerance is relatively large.1 In the latter case,

1How small is small and how large is relatively large depends on the given problem.
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the local convergence of IRQI is in fact “subcubical” (or superquadratical) and “subqua-
dratical” (or superlinear) in the Hermitian and non-Hermitian cases, respectively.

The above convergence result of IRQI may not hold, however, if the linear
systems are solved by a preconditioned Krylov subspace method. For example, consider
Algorithm 2.1 for the generalized eigenvalue problem, and suppose a preconditioner Q is
used for the inner solve of the following linear systems:

L−1ðA− σBÞL−� ~y ¼ L−1Bx with y ¼ L−� ~y;Q ¼ LL�; ðHermitian problemsÞ
or ðA− σBÞQ−1 ~y ¼ Bx with y ¼ Q−1 ~y: ðnon-Hermitian problemsÞð3:8Þ

For standard Hermitian problems, Simoncini and Eldén [24] and Xue and Elman [31]
provide evidence that tm ¼ gtan ∠ ðym; v1Þ can be much larger than t0 ¼ gtan ∠ ðx; v1Þ
for a large number of inner iterations, in which ∠ðym; v1Þ decreases very slowly with m,
until m becomes large enough. This undesirable behavior, in fact, can also be observed
for standard non-Hermitian and generalized problems. The reason is that for the pre-
conditioned Krylov subspace linear solve, the initial inner iterate y1 ¼ Q−1Bx (up to a
scaling factor) is generally far from a good approximation to the desired eigenvector v1,
even if the current outer iterate x≈ v1. To resolve this difficulty, Freitag and Spence [9],
[10] propose a special type of preconditioner with “tuning.”Given some preconditionerQ
appropriate for A− σB, a tuned preconditioner Q is a low-rank update of Q, which
satisfies Qx ¼ Bx, or, equivalently, Q−1Bx ¼ x. Examples of such preconditioners Q
used in literature include the following:

Q ¼ Q þ ðBx−QxÞðBx−QxÞ�
ðBx−QxÞ�x ;ð3:9aÞ

Q ¼ Q −
ðQxÞðQxÞ�
ðQxÞ�x þ ðBxÞðBxÞ�

ðBxÞ�x ; orð3:9bÞ

Q ¼ Q þ ðBx−QxÞp�
p�x

with some vector p such that p�x ≠ 0:ð3:9cÞ

Note that Q constructed in (3.9a) and (3.9b) is Hermitian if Q and B are both
Hermitian; in addition, it is shown in [31] that Q defined in (3.9b) is positive definite
if B and Q are positive definite. Therefore it is advisable to construct a tuned precondi-
tioner by (3.9b) for the inner solves for Hermitian problems. On the other hand, (3.9c) is
usually used in this setting for non-Hermitian problems. At each step of the inner
solve, the matrix-vector product involving Q−1 is computed by the Sherman–
Morrison–Woodbury formula; for example,

Q−1v ¼ Q−1v−
ðQ−1Bx− xÞp�Q−1v

p�Q−1Bx
;ð3:10Þ

whereQ is defined in (3.9c). The additional cost for the use of the tuned preconditioner is
minimal, as both ðQ−1Bx− xÞ and p�Q−1Bx need to be computed only once in each
outer iteration for the inner solve.

Intuitively, with the tuned preconditioner, if x≈ v1, then the initial inner iterate
y1 ¼ Q−1Bx ¼ x is a good approximate eigenvector. The eigenvector approximation
continues to improve as the inner iteration proceeds, and the difficulty arising in the
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solution of (3.8) with (untuned) Q is thus resolved (see [31] for a detailed discussion of
the virtue of the tuned preconditioner).

We now show that Corollary 3.3 holds for Algorithm 2.1 if the inner solve is done by
a tuned preconditioner Q satisfying Qx ¼ Bx. To this end, we begin with some preli-
minary propositions.

PROPOSITION 3.4. Let p, q ∈ Cn be nonzero vectors and K ∈ Cn×n. Then
sin∠ðKp;KqÞ ≤ κðKÞ tan∠ðp; qÞ.

Proof. Suppose without loss of generality that p and q are both unit vectors. Let
p ¼ cqþ sr, where r ∈ Cn is a unit vector orthogonal to q and tan∠ðp; qÞ ¼ jsj∕ jcj. It
follows that Kp ¼ cKqþ sKr, and thus using elementary geometry

sin∠ðKp;KqÞ ≤ ksKrk
kcKqk ≤ κðKÞ tan∠ðp; qÞ.

Note that the first inequality is sharp if Kp ⊥ Kr. ▯
PROPOSITION 3.5 (Theorem 9.1 in [3]). Suppose that ðλ1; v1Þ is an algebraically simple

right eigenpair of ðA;BÞ with corresponding left eigenvector u�
1. Let Ql and Qr be non-

singular matrices, and suppose that u�
1QlQrv1 ≠ 0. If σ is an approximation to λ1 such

that λ1 − σ is sufficiently small, then the matrix Q−1
l ðA− σBÞQ−1

r has an algebraically
simple eigenvalue μ1, and there exist constants c4 and C 4 such that

c4jλ1 − σj ≤ jμ1j ≤ C 4jλ1 − σj:ð3:11Þ

PROPOSITION 3.6. Consider MH ~y≡ L−1ðA− σBÞL−� ~y ¼ L−1Bx with LL� ¼ Q and
MnH ~y≡ ðA− σBÞQ−1 ~y ¼ Bx arising in IRQI for Hermitian and non-Hermitian pro-
blems, respectively. Let wH

1 and wnH
1 be the eigenvector of MH and MnH , respectively,

corresponding to the eigenvalue of smallest magnitude. Suppose that x ¼ γðcv1 þ suÞ is a
good approximation to v1 such that t ¼ jsj∕ jcj is small enough; then there exists a
constant C5 such that

tan∠ðwH
1 ;L

−1BxÞ ≤ C5t;ð3:12Þ
and so is gtan ∠ ðwnH

1 ; BxÞ.
Proof. The proof is very similar to that of Theorem 3.6 in [10]. ▯
Remark. Proposition 3.6 shows that the preconditioned linear systems with tuning

are similar to the unpreconditioned linear system ðA− σI Þy ¼ x, in the sense that the
preconditioned right-hand side is an approximate eigenvector of the preconditioned sys-
tem matrix MH or MnH corresponding to the eigenvalue of smallest magnitude λM1 .
Therefore Theorem 3.1 can be applied to study the preconditioned inner solve, with
tan∠ðwH

1 ;L
−1BxÞ and gtan ∠ ðwnH

1 ; BxÞ denoted as t0 in that theorem.
PROPOSITION 3.7 (Proposition 2.1 in [13]). Suppose that M ∈ Cn×n has a simple

eigenpair ðλM1 ; w1Þ well separated from the rest of the spectrum. The Schur decomposi-
tion of M is

M ¼ ½w1;W 2�
�
λM1 n�

12

0 N 22

�
½w1;W 2��;

where ½w1;W 2� is unitary. LetMŵ ¼ ξŵþ f with kŵk ¼ 1. That is, ðξ; ŵÞ is an approx-
imate eigenpair of M with eigenvalue residual f . If kfk is small enough such that

kfk <
1

2
sepðλM1 ; N 22Þ and

kfkðkfk þ kn12kÞ
ðsepðλM1 ; N 22Þ− 2kfkÞ2 <

1

4
;ð3:13Þ
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where sepðλM1 ; N 22Þ ¼ kðλM1 I − N 22Þ−1k−1, then

ŵ ¼ w1 þW 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p�p

p ;

where p is a unique vector satisfying

kpk ¼ tan∠ðw1; ŵÞ ≤ 2kfk
sepðλM1 ; N 22Þ− 2kfk :ð3:14Þ

We are ready now to present the major theorem on the convergence of IRQI.
THEOREM 3.8. Let x ¼ γðcv1 þ suÞ be an approximation to the desired eigenvector

v1, t ¼ jsj ∕ jcj, Q be a tuned preconditioner satisfying Qx ¼ Bx,

MH ¼ L−1ðA− σBÞL−� with LL� ¼ Q

and MnH ¼ ðA− σBÞQ−1, fH ¼ ðλ1 − σÞtðL�u− L−1BuÞ ∕ kL�v1k, and

fnH ¼ ðλ1 − σÞtðQu− BuÞ ∕ kQv1k.

Suppose that t is small enough, and therefore kfHk and kfnHk are small enough such that
the assumption (3.13) is satisfied for MH and MnH . Suppose that the shifted linear sys-
tem in step 2 of Algorithm 2.1 is solved by a preconditioned Krylov subspace solver withQ
as preconditioner and a zero starting vector. Then cubic and quadratic convergence of
IRQI can be achieved if a constant moderately smaller than 1 ∕ κðW Þ is used as the re-
lative tolerance for the preconditioned inner solve, whereW is the matrix of eigenvectors
of MH and MnH for Hermitian and non-Hermitian problems, respectively. (Note in
particular that κðW Þ ¼ 1 for MH .)

Proof. We first show that the desired eigenvector v1 of ðA;BÞ is closely related to an
approximate eigenvector of the preconditioned matrix MH ¼ L−1ðA− σBÞL−� or
MnH ¼ ðA− σBÞQ−1 corresponding to eigenvalue λ1 − σ. In fact, for Hermitian pro-
blems, we have

Av1 ¼ λ1Bv1 ⇔ ðA− σBÞv1 ¼ ðλ1 − σÞBv1
⇔ L−1ðA− σBÞv1 ¼ ðλ1 − σÞL−1Bv1

⇔ L−1ðA− σBÞL−�ðL�v1Þ ¼ ðλ1 − σÞðL�v1Þ þ ðλ1 − σÞðL−1B − L�Þv1
¼ ðλ1 − σÞðL�v1Þ þ ðλ1 − σÞðL−1B − L�Þ x ∕ γ − su

c

¼ ðλ1 − σÞðL�v1Þ þ ðλ1 − σÞtðL�u− L−1BuÞ ðas L−1Bx ¼ L�xÞ
⇔ MHŵH ¼ ξŵH þ fH ;ð3:15Þ

where ŵH ¼ L�v1 ∕ kL�v1k, ξ ¼ λ1 − σ, and fH ¼ ðλ1 − σÞtðL�u− L−1BuÞ ∕ kL�v1k. For
non-Hermitian problems, similarly,

ðA− σBÞQ−1ðQv1Þ ¼ ðλ1 − σÞðQv1Þ þ ðλ1 − σÞtðQu− BuÞ
⇔ MnHŵnH ¼ ξŵnH þ fnH ;ð3:16Þ

where ŵnH ¼ Qv1 ∕ kQv1k, ξ ¼ λ1 − σ, and fnH ¼ ðλ1 − σÞtðQu− BuÞ ∕ kQv1k. Let wH
1

and wnH
1 be the eigenvectors of MH and MnH , respectively, corresponding to the eigen-

value of smallest magnitude λM1 . We know from (3.14) that for small enough t,
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tan∠ðwH
1 ;L

�v1Þ
tan∠ðwnH

1 ;Qv1Þ
�

≤
2jðλ1 − σÞtjkgk

sepðλM1 ; N 22Þ− 2jðλ1 − σÞtjkgk ≤ C 6jðλ1 − σÞtj;ð3:17Þ

where g ¼ ðL�u− L−1BuÞ ∕ kL�v1k and g ¼ ðQu− BuÞ ∕ kQv1k for Hermitian and non-
Hermitian problems, respectively.

Suppose that a Krylov subspace method with a zero starting vector is applied to
solve MH ~y ¼ L−1Bx with y ¼ L−� ~y or MnH ~y ¼ Bx with y ¼ Q−1 ~y. To make the proof
concise, we only study Hermitian problems, as the derivation for non-Hermitian pro-
blems is quite similar. To begin the analysis, suppose at the mth inner step, the relative
residual norm of the linear system L−1ðA− σBÞL−� ~y ¼ L−1Bx is moderately smaller
than 1 ∕ κðW Þ, and that αm ≤ C 1 (as assumed in Corollary 3.3). From Theorem 3.1
and Propositions 3.2, 3.4, 3.5, and 3.6, we have

tan∠ðv1; ymÞ ¼ tan∠ðv1;L−� ~ymÞ ≤ C 3 ∠ ðv1;L−� ~ymÞ ðProposition 3.2Þ
≤ C3ð∠ðv1;L−�wH

1 Þ þ ∠ðL−�wH
1 ;L

−� ~ymÞÞ

≤
C 3

C 2

ðsin∠ðv1;L−�wH
1 Þ þ sin∠ðL−�wH

1 ;L
−� ~ymÞÞ ðProposition 3.2Þ

≤
κðL−�ÞC 3

C2

ðtan∠ðL�v1; wH
1 Þ þ tan∠ðwH

1 ; ~ymÞÞ ðProposition 3.4Þ

≤
κðL−�ÞC 3

C2

�
C 6jðλ1 − σÞtj þ jλM1 j

C 0

αm tan∠ðwH
1 ;L

−1BxÞ
�

ðð3.17Þ and ð3.2ÞÞ

≤
κðL−�ÞC 3

C2

�
C 6 þ

C 1C 4C 5

C 0

�
jðλ1 − σÞtj ¼ Oðt3Þ ðð3.12Þ and ð3.11ÞÞð3:18Þ

for Hermitian problems. Similarly, we can show for non-Hermitian problems that
gtan ∠ ðym; v1Þ can be bounded above byOððλ1 − σÞtÞ ¼ Oðt2Þ. The cubic and quadratic
convergence of IRQI is thus established where the inner solve is done by a precondi-
tioned Krylov subspace solver with tuning. ▯

We now make some remarks on the results in this section. First, Corollary 3.3 and
Theorem 3.8 provide some important improvements of existing general convergence re-
sults of IRQI in literature. Specifically, it is shown by different approaches in [2], [4], [8],
[9], [10], [30] that IRQI converges quadratically and linearly for Hermitian and non-
Hermitian problems, respectively, if the relative residual norm of the shifted linear sys-
tem is bounded by a small constant, and it converges cubically and quadratically
for the two types of problems if the relative residual norm is bounded by OðjsjÞ (indicat-
ing a sequence of decreasing tolerances for the inner solves as the outer iteration
proceeds). Our results, assuming α

ðiÞ
m� uniformly bounded by a moderate constant C 1

in all outer iterations, show that a moderate small fixed relative tolerance for a
properly preconditioned Krylov subspace inner solve is sufficient to guarantee full con-
vergence rates of IRQI. In addition, our conclusion indicates that a slower convergence
rate—for example, quadratic and linear convergence for Hermitian and non-Hermitian
problems—might be achieved even if the inner solve is done with very low accuracy.

In addition, Theorem 3.1 and Corollary 3.3 indicate that an ideal Krylov subspace
solver used in IRQI is supposed to decrease both the residual norm kpmðMÞbk and
αm ¼ kΛ−1

M ðI − pmðΛM ÞÞezk as quickly as possible. Therefore, MINRES and GMRES
may have some advantage over other Krylov subspace methods as they minimize
the residual norm at any given step m. The behavior of αm for different solvers is less
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clear, but our numerical results indicate that the minimal residual methods still tend to
decrease αm more quickly than other methods.

4. Equivalence of the inner solves of IRQI and single-vector JD. In this
section, we refine the equivalence results of inner solves of IRQI and the single-vector
JD method shown in [11], [13].

It is suggested in [26] that the shifted linear system ðA− σBÞy ¼ Bx arising in RQI
can be equivalently reformulated as a single-vector JD correction equation

�
I −

Bxw�

w�Bx

�
ðA− σBÞ

�
I −

xu�

u�x

�
s ¼ −r ≔ −ðA− σBÞx with s ⊥ u;ð4:1Þ

where the generalized Rayleigh quotient

σ ¼ w�Ax
w�Bx

;

and s is the correction vector to x such that xþ s is supposed to be an improved eigen-
vector approximation. For simplicity of notation, let

Π1 ¼ I −
Bxw�

w�Bx
and Π2 ¼ I −

xu�

u�x
;ð4:2Þ

where a most common choice is w ¼ x and u ¼ Bx for Hermitian problems, and w ¼ Bx
for non-Hermitian problems; see [26] for other possible choices ofw and u. In this section,
we consider the non-Hermitian case and thus have w ¼ Bx.

It can be shown that ðA− σBÞy ¼ Bx and (4.1) are equivalent in the sense that
y ¼ ηðxþ sÞ for some η ∈ C. In terms of inexact solutions to these equations, [24] gives
an equivalence result for standard Hermitian problems: if the same unpreconditioned
Krylov suspace method satisfying the Galerkin condition

ðresidual of the linear system is orthogonal to theKrylov subspaceÞð4:3Þ

is applied to solve both equations, then ykþ1 ¼ ηkðxþ skÞ, where ηk ∈ C, ykþ1, and sk are
the approximate solutions of the two equations obtained in the (kþ 1)th and kth iteration,
respectively. This result is extended in [15] to a two-sided RQI and a two-sided JD for non-
Hermitian problems, where the shifted linear system is solved iteratively by unprecondi-
tioned BiCG method. The equivalence result is further extended in [11], [13] to
preconditioned solves for both standard and generalized non-Hermitian problems. Assum-
ing that the tuned preconditioner QRQ is defined as in (3.9c), Freitag and Spence [11]
and Freitag, Spence, and Vainikko [13] show that ykþ1 ¼ ηkðxþ skÞ if the same
Krylov subspace method satisfying the Galerkin condition (4.3) is applied to the precondi-
tioned systems

ðA− σBÞQ−1
RQ ~y ¼ Bx with y ¼ Q−1

RQ ~y; andð4:4aÞ

Π1ðA− σBÞΠ2Q
†
JD ~s ¼ −r ≔ −ðA− σBÞx with s ¼ Q†

JD ~s;ð4:4bÞ

where Q†
JD is the pseudoinverse of QJD ¼ Π1QΠ2, where Q is as in (3.9).

In this section, we refine the equivalence results given in [11], [13]. We show that
ykþ1 ¼ ηkðxþ skÞ always holds if the same Krylov subspace method satisying the
Galerkin condition (4.3) is applied to (4.4a) and
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Π1ðA− σBÞΠ2Q
†
JD ~s ¼ −r with s ¼ Q†

JD ~s;ð4:4cÞ

where Q†
JD is the pseudoinverse of QJD ¼ Π1QRQΠ2, and QRQ is any preconditioner sa-

tisfying QRQx ¼ Bx used in (4.4a). Moreover, whether the equivalence result holds for
(4.4a) and (4.4b) depends on the specific construction of QRQ.

LEMMA 4.1 (Proposition 7.2 in [26]). Let Π1 and Π2 be the two projectors defined in
(4.2), and define PJD ¼ Π1PΠ2, where P is any given nonsingular matrix of the same
order as B. If u�P−1Bx ≠ 0, then

P†
JD ¼ ΠP

2 P
−1 ≡

�
I −

P−1Bxu�

u�P−1Bx

�
P−1.ð4:5Þ

LEMMA 4.2. Introduce two subspaces as follows:

Kk ¼ spanfBx;KQ−1
RQBx; ðKQ−1

RQÞ2Bx; : : : ; ðKQ−1
RQÞkBxg; and

Lk ¼ spanfBx;Kx;Π1KΠ2Q
†
JDKx; : : : ; ðΠ1KΠ2Q

†
JDÞk−1Kxg;ð4:6Þ

where K is any given matrix of the same order as B, and QRQ is any preconditioner
satisfying QRQx ¼ Bx. Then Kk ¼ Lk.

Proof. The proof is similar to that of Lemma 1 in [11] (for standard non-Hermitian
problems), which is done for two subspaces generated by AQ−1

RQ and Π1AΠ2Q
†
JD, respec-

tively. For the purpose of completeness and clarity, we study Kk and Lk involving the
operators KQ−1

RQ and Π1KΠ2Q
†
JD for generalized non-Hermitian problems, and outline

the proof as follows.
First of all, from Lemma 4.1, we have

Q†
JD ¼

�
I −

Q−1
RQBxu

�

u�Q−1
RQBx

�
Q−1

RQ ¼
�
I −

xu�

u�x

�
Q−1

RQ ¼ Π2Q−1
RQ:ð4:7Þ

The proof is based on induction. First, it is obvious that K0 ¼ L0 ¼ spanfBxg
and K1 ¼ L1, since KQ−1

RQBx ¼ Kx. Then, suppose Ki ¼ Li for all i ≤ k− 1, let
p ¼ ðΠ1KΠ2Q

†
JDÞk−2Kx ∈ Lk−1, and consider ðΠ1KΠ2Q

†
JDÞk−1Kx:

ðΠ1KΠ2Q
†
JDÞk−1Kx ¼ Π1KΠ2Q−1

RQðΠ1KΠ2Q
†
JDÞk−2Kx ðby ð4.7ÞÞ

¼ Π1KΠ2Q−1
RQp ¼ KΠ2Q−1

RQp− Bx
w�KΠ2Q−1

RQp

w�Bx
ðby ð4.2ÞÞ

¼ KQ−1
RQp−Kx

u�Q−1
RQp

u�x
−

w�KΠ2Q−1
RQp

w�Bx
Bx ðby ð4.2ÞÞ

¼ KQ−1
RQp−

u�Q−1
RQp

u�x
Kx−

w�KΠ2Q−1
RQp

w�Bx
Bx:ð4:8Þ

In other words, given p ∈ Lk−1 ¼ Kk−1, ðΠ1KΠ2Q
†
JDÞp ∈ Lk is in Kk, and therefore

Lk ⊆ Kk. If Lk is of dimension kþ 1, so is Kk, and thus Kk ¼ Lk.
Otherwise let i < k be the largest index such that Li is of dimension iþ 1. That is,

Liþ1 ¼ Li ¼ Ki. Let q be any vector in Ki; then Π1KΠ2Q
†
JDq ∈ Liþ1 ¼ Ki. Using deri-

vations similar to (4.8), we can show easily that KQ−1
RQq, a vector in Kiþ1, is also in Ki.

Therefore Kiþ1 ¼ Ki ¼ Li ¼ Liþ1, and by induction we have Kj ¼ Lj for all j > i. This
completes the proof. ▯
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Let K ¼ A− σB in Lemma 4.2. Then Kk and Lk \ fBxg are generated in the process of
applying a Krylov subspace solver with a zero starting vector to (4.4a) and (4.4c), re-
spectively. By the assumption that w ¼ Bx in Π1, it is obvious that spanfBxg and
Lk \ fBxg are orthogonal complements of each other. Let Uk be a matrix whose columns
form a set of orthonormal basis vectors of Lk \ fBxg; then the columns of

�
Bx
kBxk Uk

�

form a set of orthonormal basis vectors of Kk. This fact is used in the proof of Theorem 4
(the major equivalence result) in [11].

THEOREM 4.3. Suppose the same Krylov subspace method satisfying the Galerkin
condition (4.3) with a zero starting vector is applied to (4.4a) and (4.4c). Let ykþ1

and sk be the approximate solution obtained in the (kþ 1)th and kth iterations, respec-
tively. Then there exists a constant ηk ∈ C such that ykþ1 ¼ ηkðxþ skÞ.

Proof. The proof is similar to the proof of Theorem 4 in [11]. ▯
We emphasize that ykþ1 ¼ ηkðxþ skÞ holds for (4.4a) and (4.4c) as long as the

preconditioner QRQ used for (4.4a) satisfies QRQx ¼ Bx and the preconditioner QJD ¼
Π1QRQΠ2 is used for (4.4c). However, whether the equivalence of (4.4a) and (4.4c) can
be extended to (4.4b) depends on the specific construction of QRQ. To see this point,
suppose that QRQ is constructed in some manner from a preconditioner Q, and let
QJD ¼ Π1QΠ2. If somehow QJD ¼ QJD, the equivalence result can be extended to
(4.4b), because it is trivially equivalent to (4.4c). For example, for the tuned precondi-
tioner QRQ defined in (3.9c), if we choose p ¼ u, then

QJD ¼ Π1QRQΠ2 ¼ Π1

�
Q þ ðB −QÞxu�

u�x

��
I −

xu�

u�x

�

¼ Π1Q

�
I −

xu�

u�x

�
¼ QJD: ðu�Π2 ¼ 0Þ

Since QJD ¼ QJD for this specific QJD, Theorem 4.3 automatically leads to the equiva-
lence result shown in [11], [13] for (4.4a) and (4.4b) ((4.4c) is not discussed therein). For
QRQ defined in (3.9a) and (3.9b), it is easy to show that QJD ≠ QJD, and thus the
equivalence of (4.4a) and (4.4c) cannot be extended to (4.4b).

5. Alternative strategies for solving �A− σB�y � Bx. To evaluate the effi-
ciency of inner solves of IRQI, one is most concerned about how quickly significant im-
provement of eigenvector approximation can be achieved as the inner iteration proceeds.
In terms of preconditioners for the inner solve, it is shown in [9], [10], [13], [31] that a
regular preconditioner Q used in the usual setting of solving linear systems is less com-
petitive than a tuned variantQ that satisfiesQx ¼ Ax orQx ¼ Bx. The major reason is
that the initial iterate of the preconditioned inner solve with tuning is y1 ¼ Q−1Bx ¼ x
up to a scaling factor (assuming thatQx ¼ Bx), i.e., the best eigenvector approximation
currently available; in addition, x is kept in the subspace of approximate solutions
throughout the inner iteration process. This is not the case if the untuned Q is used,
and, in particular, y1 ¼ Q−1Bx is generally a poor eigenvector approximation.

The motivation of tuning is that an appropriate eigenvector approximation is gen-
erated in the first inner iteration; this approximation is further refined in subsequent
inner iterations, in which tuning is in fact no longer needed. This motivation can also
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be achieved by two alternative inner solvers, both of which keep x in the subspace of
candidate solutions and do not require the use of a tuned preconditioner.

The first alternative strategy is to solve ðA− σBÞy ¼ Bx by GCRO-DR [20] with a
special recycled vector. GCRO-DR is a typical iterative solver with “subspace recycling”
originally developed for solving a sequence of slowly changing linear systems. Usually, a
small set of vectors from the subspace of candidate approximate solutions for one linear
system is carefully selected and “recycled,” i.e., used for the solution of the next linear
system. The cost of solving subsequent linear systems may be reduced, as the subspace of
candidate solutions need not be built from scratch. In our setting, we select a special
single recycled vector such that x is kept in the subspace for approximate solutions.

The framework of GCRO-DR is as follows. Suppose that a zero starting vector is
used to solve the linear system My ¼ b with a set of recycled vectors f ~p1; ~p2; : : : ; ~pkg.
Using a QR factorization, it is easy to generate a block of vectors Pk ¼ ½p1; p2; : : : ; pk�
such that Dk ¼ MPk has orthonormal columns and rangeðPkÞ ¼ spanf ~p1; ~p2; : : : ; ~pkg.
As the algorithm starts, we first generate an intermediate solution ytmp ¼ PkD

�
kb (the

minimal residual solution over rangeðPkÞ), compute btmp ¼ b− DkD
�
kb, and let

u1 ¼ btmp ∕ kbtmpk. Then, the subspace Km−kþ1ððI −DkD
�
kÞM;u1Þ with orthonormal

basis vectors Um−kþ1 is generated through the Arnoldi process, which produces the
decomposition ðI − DkD

�
kÞMUm−k ¼ Um−kþ1H̄m−k. Since Um−kþ1 ⊥ Dk, we have

MÛm ¼ Ŵmþ1Ḡm; where

Ûm ¼ ½Pk Um−k �; Ŵmþ1 ¼ ½Dk Um−kþ1 �; and Ḡm ¼
�
I k D�

kMUm−k

0 H̄m−k

�
:ð5:1Þ

Finally, we construct the approximate solution ym−k ¼ ytmp þ Ûmt, where t minimizes
kkbtmpkekþ1 − Ḡmtk, and evaluate the corresponding residual of the linear system
res ¼ btmp −MÛmt ¼ btmp − Ŵmþ1Ḡmt. See the appendix of [20] for details.

In the setting of IRQI, consider solving the preconditioned linear system
M ~y≡ ðA− σBÞQ−1 ~y ¼ Bx≡ b with y ¼ Q−1 ~y by GCRO-DR. We can choose a single
recycled vector p1 such that ym−1 ¼ Q−1 ~ym−1 belongs to a subspace of which x is a basis
vector. Given the GCRO-DR factorization (5.1), with k ¼ 1, we have

P1 ¼ p1 ¼ Qx ∕ krk with r ¼ ðA− σBÞx ⊥ Bx;

D1 ¼ r ∕ krk;
ytmp ¼ P1D

�
1Bx ¼ 0;

btmp ¼ ðI − D1D
�
1ÞBx ¼ Bx; and

u1 ¼ Bx ∕ kBxk:ð5:2Þ

Therefore, ym−1 ¼ Q−1 ~ym−1 ∈ Q−1rangeðÛmÞ ¼ Q−1rangeðP1Þ þQ−1rangeðUm−1Þ, or
equivalently, since ðI − ðrr�Þ∕ krk2ÞBx ¼ Bx,

ym−1 ∈ spanfxg þQ−1Km−1

��
I −

rr�

krk2
�
ðA− σBÞQ−1

�
I −

rr�

krk2
�
; Bx

�
:ð5:3Þ

Thus, improvement of the eigenvector approximation x comes from a correction vector
in Q−1Km−1ððI − ðrr�Þ ∕ krk2ÞðA− σBÞQ−1ðI − ðrr�Þ ∕ krk2Þ; BxÞ.

The second alternative approach to keep x in the subspace of candidate solutions
is to use the FGMRES [22] algorithm with a special configuration for the first inner

EFFICIENT INNER SOLVES FOR INEXACT RQI 1007

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



iteration. FMGRES is a flexible variant of the right-preconditioned GMRES algorithm,
where the preconditioner is not a fixed operator. Compared to the regular GMRES
algorithm, at the jth step, an additional intermediate vector zj ¼ Q−1

j vj must be saved,
where Qj and vj, respectively, are the current preconditioning operator and the Arnoldi
vector. Assuming that FGMRES with a zero starting vector is used to solveMy ¼ b, we
see easily that MZm ¼ Vmþ1H̄m holds with v1 ¼ b ∕ kbk. The approximate solution
obtained at the mth step is ym ¼ Zmt, where t minimizes kkbke1 − H̄mtk, and ym mini-
mizes the residual norm kb−Mxmk over rangeðZmÞ.

Consider solving ðA− σBÞy ¼ Bx by FGMRES with a zero starting vector. The
first Arnoldi vector is v1 ¼ Bx ∕ kBxk. To keep x in the subspace for candidate solutions,
we choose Q1 such that

z1 ¼ Q−1
1 v1 ¼ Q−1

1 ðBx ∕ kBxkÞ ¼ xð5:4Þ
up to a scaling factor. Obviously, a tuned preconditioner Q with Qx ¼ Bx precisely
satisfies this condition, and z1 ¼ x ∕ kBxk can be generated directly without actually
using Q. It then follows that

v2 ¼ ðA− σBÞQ−1
1 v1 − hðA− σBÞQ−1

1 v1; v1iv1 ¼ r − hr; Bx ∕ kBxkiv1 ¼ rð5:5Þ

up to a scaling factor. In all subsequent FGMRES steps, we use a fixed untuned pre-
conditioner Q such that fz2; : : : ; zmg need not be saved for constructing ym. In fact,
ym ¼ Zmt ¼

P
m
i¼1 zitðiÞ ¼ z1tð1Þ þQ−1ðPm

i¼2 vitðiÞÞ can be computed without using
any zj for 2 ≤ j ≤ m. With the fixed preconditioner Q, we can see without difficulty
that the subspace spanned by fv2; : : : ; vmg is in fact a Krylov subspace generated with
the operator ðI − v1v

�
1ÞðA− σBÞQ−1 and the vector v2. Therefore, we have

ym ∈ rangeðZmÞ ¼ spanðz1Þ þQ−1rangeð½v2; : : : ; vm�Þ

¼ spanfxg þQ−1Km−1

��
I −

BxðBxÞ�
kBxk2

�
ðA− σBÞQ−1

�
I −

BxðBxÞ�
kBxk2

�
; r

�
:ð5:6Þ

Similarly, refinement of the eigenvector approximation x comes from some correction in
Q−1Km−1ððI − ðBxÞðBxÞ� ∕ kBxk2ÞðA− σBÞQ−1; rÞ. Interestingly, there exists a duality
between the Krylov subspace in (5.6) and that in (5.3).

Both the above GCRO-DR and FGMRES algorithms include x in the subspace of
candidate solutions, but numerical experiments in section 6 show that FGMRES is con-
siderably more efficient than GCRO-DR in this setting, in the sense that it provides
much better eigenvector approximation than GCRO-DR as the inner iteration proceeds,
until the linear residual norms of both solves become sufficiently small. Some insight can
be obtained from a connection between the Krylov subspace in (5.6) generated by
FGMRES and that generated from the iterative solution of a modified correction equa-
tion of single-vector JD. In fact, consider the correction equation (4.1), and note that
the projector Π2 ¼ ðI − xu� ∕ ðu�xÞÞ may be replaced by some alternative projectors, for
example, Π1; see [26], [34] for other variants of the correction equation. Considering the
typical choice of w ¼ Bx for Π1 in the non-Hermitian case, we have the modified correc-
tion equation

�
I −

BxðBxÞ�
kBxk2

�
ðA− σBÞ

�
I −

BxðBxÞ�
kBxk2

�
s ¼ −r; s ⊥ Bx:ð5:7Þ

The exact solution of (5.7) is
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s ¼ ðBxÞ�x
ðBxÞ�ðA− σBÞ−1Bx

ðA− σBÞ−1Bx− x

(assuming that ðBxÞ�ðA− σBÞ−1Bx ≠ 0); that is, if ðBxÞ�x ≠ 0, then xþ s ¼
ðA− σBÞ−1Bx—the exact solution of ðAx− σBÞy ¼ Bx arising in RQI, up to a scaling
factor. The preconditioned systemΠ1ðA− σBÞQ†

JDΠ1 ~s ¼ −r can be solved by any prop-
er Krylov subspace methods, where Q†

JD is the pseudoinverse of QJD ¼ Π1QΠ1. There-
fore, the approximate correction sm−1 ¼ Q†

JD ~sm−1 is extracted from the subspace

Q†
JDKm−1

��
I −

BxðBxÞ�
kBxk2

�
ðA− σBÞQ†

JD

�
I −

BxðBxÞ�
kBxk2

�
; r

�
:

The close similarity between this subspace and that in (5.6) for the correction vector
provides some insight into the advantage of FGMRES over GCRO-DR in this setting.

6. Numerical experiments. In this section, we first illustrate the convergence
analysis of IRQI given in section 3, showing that IRQI converges almost as quickly
as exact RQI if the inner linear systems are solved by Krylov subspace methods with
a tuned preconditioner to some reasonably small fixed tolerances. We also show that
IRQI outperforms inexact Arnoldi method in efficiency for computing a single interior
eigenpair of GNHEP, if a good initial eigenvector approximation is available. We then
demonstrate the refined equivalence results discussed in section 4 for the inner solves of
IRQI and single-vector JD.We also show that one of the alternative strategies—namely,
the FGMRES algorithm discussed in section 5—performs as efficiently as the GMRES
algorithm with a tuned preconditioner.

We use six Hermitian and six non-Hermitian test problems. Basic information of
these problems and corresponding incomplete factorization preconditioners used for
the inner solve is given in Table 6.1. For example, the first Hermitian problem
bcsstkðmÞ13 stands for Av ¼ λBv with A ¼ bcsstk13:mtx and B ¼ bcsstm13:mtx from
the Matrix Market [17] (abbreviated as MM). A and B are of order n ¼ 2003, and the
sum of nonzero entries of the two matrices is nnz ¼ 105064. The desired eigenvalue is
λ1 ¼ 1.4753× 103. An incomplete Cholesky preconditioner is generated by the
MATLAB function cholinc for A− σB (where σ ¼ 103) with drop tolerance

TABLE 6.1
Information about test problems and corresponding preconditioners. Top 6: Hermitian problems. Bottom

6: non-Hermitian problems.

Problems src n nnz λ1 σ droptol

bcsstkðmÞ13 MM 2003 105064 1.4753eþ 3 1eþ 3 1e− 4

KðMÞuu UFL 7102 510334 9.7834eþ 0 9eþ 0 1.25e− 2

bcsstkðmÞ36 UFL 23052 1463746 6.4097eþ 2 6eþ 2 1.25e− 7

bcsstkðmÞ39 UFL 46772 2107434 −2.5897eþ 1 −3eþ 1 1e− 4
therm tkðcÞ UFL 102158 1423116 7.2421e− 15 −1e− 1 1e− 4

LT1024 — 1044484 8351782 4.7036e− 1 0 2e− 3

utm1700aðbÞ MM 1700 42822 3.2428e− 2 3e− 2 1e− 3

mhd4800aðbÞ MM 4800 129772 −8.1617eþ 2 −8eþ 2 6.5e− 7
kðmÞ3plates UFL 11107 385566 1.0376eþ 5 1eþ 5 2.5e− 5

therm dkðmÞ UFL 204316 4269344 2.3485eþ 8 2eþ 8 5e− 4

IFISS1 IFISS 72867 3699934 −2.5955e− 2 — —

IFISS2 IFISS 474499 24631664 −6.3100e− 3 — —
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droptol ¼ 10−4. The shifts σ are manually chosen according to the desired eigenvalue λ1
computed by MATLAB function eigs in the “shift-invert” mode, which is based on the
sparse LU decomposition of (A− σB). Similarly, the third non-Hermitian problem
kðmÞ3plates comes from the University of Florida sparse matrix collection (UFL),
and the corresponding incomplete LU preconditioner is generated by ilu forA− σB with
drop tolerance 2.5× 10−5. The last Hermitian problem LT1024 is constructed directly by
MATLAB commands, where A¼1eþ5�delsqðnumgridð‘S’;1024ÞÞ is a five-point fi-
nite difference Laplacian on a two-dimensional “S” shaped domain with 1024 grid points in
both x and y directions, andB is a tridiagonal matrix with 2.01 on themain diagonal and 1
on the subdiagonal and superdiagonal. The last two non-Hermitian problems, IFISS1 and
IFISS2, arise from the linear stability analysis of a model of two-dimensional incompres-
sible fluid flow over a backward facing step, constructed using the IFISS
software package [5], [6]. The domain is ½−1; L�× ½−1; 1� with ½−1; 0�× ½−1; 0� cut
out, where L ¼ 15 in IFISS1 and L ¼ 25 in IFISS2; the Reynolds numbers are 500
and 1200, respectively. Let u ¼ uðx; yÞ and v ¼ vðx; yÞ be the horizontal and vertical com-
ponents of the velocity, p ¼ pðx; yÞ be the pressure, and ν be the viscosity. The boundary
conditions are

u ¼ 4yð1− yÞ; ν ¼ 0 ðparabolic inflowÞ on x ¼ −1; y ∈ ½0; 1�;

ν
∂u
∂x

− p ¼ 0;
∂ν
∂y

¼ 0 ðnatural outflowÞ on x ¼ L; y ∈ ½−1; 1�;

u ¼ ν ¼ 0 ðno-slipÞ on all other boundaries.ð6:1Þ

We use a biquadratic/bilinear (Q2 −Q1) finite element discretization with element width
1 ∕ 16 and 1 ∕ 32, respectively (grid parameter 6 and 7 in the IFISS code) for IFISS1 and
IFISS2. Inner linear solves are done using the least squares commutator preconditioner [7].
The desired eigenvalue λ1 is the right-most critical eigenvalue that determines the linear
stability of the steady-state solution of the fluid flowmodel. All numerical experiments are
performed using MATLAB R2009b on a 64-bit Red Hat Enterprise Linux Server Release
5.3 system with a quad-core 2.2 GHz AMD Operon processor and 8GB memory.

We first give numerical results to illustrate the convergence analysis in section 3.
For all test problems, we compute an accurate approximation to the desired eigenpair
ðλ1; v1Þ by eigs in the shift-invert mode (suppose that v1 is normalized with respect to
the B or B�B inner product for Hermitian and non-Hermitian problems, respectively),
and let the initial eigenvector approximation xð0Þ be some random perturbation of the
accurate eigenvector approximation generated by the “seed” numbers given in Tables 6.2
and 6.3. For example, for bcsstkðmÞ13, xð0Þ is generated by the following code:

randstr¼RandStreamð‘mt19937ar’;‘seed’;421010018Þ;
x 0¼v 1þ5e−6�randnðrandstr;lengthðv1Þ;1Þ;

These initial outer iterates are not very close to the desired eigenvector, in the sense
that an initial iterate with slightly larger perturbation leads to a Rayleigh quotient clo-
ser to an undesired eigenvalue and hence failure of convergence toward the desired ei-
genpair [19]. We then run IRQI (Algorithm 2.1) until the error angle of xðiÞ in some outer
iteration is reasonably close to machine precision and cannot be further significantly
reduced due to the conditioning of the linear system. The inner solves are performed
by preconditioned MINRES, GMRES, or IDR(4) [28] with the tuned preconditioners
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TABLE 6.2
Seeds for xð0Þ and eigenvalue residual norms of outer iterates for Hermitian problems.

prob & seed relative tol initial error iter 1 error iter 2 error iter 3 error total inner

bcsstkðmÞ13 5e− 4 1.403e− 4 2.368e− 2 1.690e− 5 3.274e− 12 71
421010018 1e− 6 2.993e− 4 6.818e− 11 — 109
5e− 6 exact 2.400e− 4 1.005e− 11 — —

KðMÞuu 1e− 3 1.1216e− 2 1.0939e− 3 3.6466e− 8 — 49
263398171 1e− 4 5.0859e− 4 3.2243e− 10 — 70
7e− 3 exact 1.2761e− 4 3.4369e− 12 — —

bcsstkðmÞ36 2e− 4 2.0874e− 3 4.1501e− 1 3.6537e− 5 — 51
165906907 2e− 5 6.5398e− 2 1.3726e− 7 — 85
1.25e− 4 exact 3.8270e− 3 8.4592e− 8 — —

bcsstkðmÞ39 1e− 3 1.1626e− 3 2.0426e− 2 1.5086e− 5 4.2022e− 12 92
400466919 2.5e− 6 1.3547e− 3 2.0753e− 9 — 126
8e− 6 exact 1.8604e− 4 8.8151e− 12 — —

thermo tkðcÞ 1.25e− 2 8.8808e− 3 1.3759e− 2 3.7919e− 5 4.5113e− 12 92
39850235 1.25e− 4 2.6774e− 3 1.8239e− 8 — 97
2.6e− 4 exact 4.4756e− 4 1.2356e− 10 — —

LT1024 1e− 4 1.0241e− 2 1.8136e− 3 2.1864e− 8 — 134
326568604 7.5e− 6 4.0308e− 4 2.8484e− 10 — 176
5e− 6 exact 3.4887e− 4 6.2949e− 11 — —

TABLE 6.3
Seeds for xð0Þ and eigenvalue residual norms of outer iterates for non-Hermitian problems.

prob & seed relative tol initial error iter 1 error iter 2 error iter 3 error iter 4 error total inner

utm1700aðbÞ 5e− 5 2.012e− 3 1.777e− 3 1.056e− 5 9.033e− 9 — 167
823128701 5e− 6 1.755e− 3 2.649e− 6 5.357e− 10 — 177
5e− 4 exact 1.753e− 3 2.474e− 6 1.130e− 11 — —

mhd4800aðbÞ 7.5e− 4 1.718e− 7 2.709e− 3 3.261e− 5 9.749e− 9 — 198
552557946 5e− 5 1.092e− 4 1.407e− 5 5.086e− 11 — 237
1e− 2 exact 1.071e− 4 7.689e− 9 4.224e− 14 — —

kðmÞ3plates 7.5e− 2 2.553e− 3 1.840e− 1 3.437e− 3 1.265e− 5 8.149e− 9 202
110831261 5e− 3 3.560e− 2 1.913e− 5 7.035e− 10 — 175
2e− 3 exact 6.845e− 2 6.523e− 5 1.659e− 10 — —

thermo dkðmÞ 2.5e− 2 1.165e− 2 9.874e− 3 3.782e− 3 8.426e− 6 1.632e− 10 332
626185418 1e− 3 3.008e− 3 1.272e− 6 1.825e− 11 — 342
1e− 0 exact 1.443e− 3 3.336e− 6 2.037e− 11 — —

IFISS1 1e− 1 5.837e− 2 1.211e− 1 1.346e− 2 1.307e− 4 2.292e− 7 149
759497213 1e− 3 6.148e− 3 2.851e− 5 7.633e− 10 — 174
2e− 1 exact 6.698e− 3 3.353e− 5 7.290e− 10 — —

IFISS2 1e− 1 4.662e− 2 3.179e− 1 3.501e− 2 2.010e− 4 9.055e− 8 402
462537766 1e− 3 3.116e− 2 2.045e− 5 3.570e− 11 — 419
2.5e− 1 exact 3.270e− 2 2.048e− 5 2.912e− 11 — —

EFFICIENT INNER SOLVES FOR INEXACT RQI 1011

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



defined in (3.9b) for Hermitian problems and in (3.9c) with p ¼ Q−1Bx for non-
Hermitian problems. A reasonably small fixed tolerance is chosen for each problem.

Tables 6.2 and 6.3 give the error angles ∠ðv1; xðiÞÞ of outer iterates generated by
exact and inexact RQI; the relative tolerances of inner solves and total inner iterations
are also listed. We can see from these tables that the local convergence rates of IRQI are
not obviously compromised if the shifted linear systems are solved by minimal residual
methods with tuned preconditioners to a moderately small fixed tolerance; in particular,
full convergence rates can be achieved without using a decreasing sequence of tolerances
for the inner solves.

In practice, as Tables 6.2 and 6.3 show, the relative tolerances for inner solves used
to guarantee the full convergence rate of IRQI for non-Hermitian problems do not seem
to be significantly smaller than those needed for Hermitian problems. This indicates that
the bound of the tolerances given in Theorem 3.8 (constants moderately smaller than
1 ∕ κðW Þ) might be pessimistic for non-Hermitian problems. It seems from these 12 pro-
blems that relative tolerances between 10−3 and 10−6 for the inner solve may be enough
to guarantee full convergence rates of IRQI for both Hermitian and non-Hermitian
problems.

In addition, we found that our IRQI algorithm is superior to the inexact Arnoldi
method in efficiency for computing a single interior eigenpair for GNHEP. Both eigen-
value algorithms start with the same outer iterate xð0Þ or xð1Þ (obtained from exact RQI).
The shift of the shift-invert operator used for the inexact Arnoldi method is chosen to be
the Rayleigh quotient generated from the initial outer iterate; that is, the same linear
system ðA− σðiÞBÞy ¼ BxðiÞ (i ¼ 0 or 1) is solved in the first outer iteration of both
algorithms. The inner solves for the inexact Arnoldi method are performed with the
untuned preconditioner, and the tolerance is chosen such that the eigenvalue residual
norm of the computed eigenvector approximation is comparable to that computed by
IRQI. For each problem, we compare these two algorithms using both long-term recur-
rence minimum residual methods (GCRO-DR or GMRES without restarting) and the
short-term recurrence solver IDR(4) as the inner solver. For GCRO-DR, we recycle Ritz
vectors corresponding to the largest Ritz values obtained in the GMRES iterations for
the first inner solve of the inexact Arnoldi method; 40 Ritz vectors are used for the pro-
blems thermo dkðmÞ and IFISS1, and 20 Ritz vectors are used for other problems. The
use of subspace recycling helps reduce the inner iteration counts. Table 6.4 shows the
tolerances for the inner solves, eigenvalue residual norms of the final eigenvector approx-
imation computed by these methods, and total number of outer and inner iteration
steps. One can see clearly from the table that our IRQI (abbreviated as RQ) consistently
outperforms the inexact Arnoldi method (abbreviated as AR) in terms of the total num-
ber of inner iterations (and thus total computational time), for both types of inner sol-
vers. The only exception is problem thermo dkðmÞ, for which IDR(4) fails to converge
to the relative tolerance 10−1 in 1200 steps for the inner solve of IRQI. We speculate that
the problem is due to the severe floating point errors associated with the tuned precon-
ditioner (see Figure 6.2, middle right), and the way to work around this problem is to use
FGMRES. Note that IDR(4) also fails to converge to the tolerance 10−6 for the inner
solves of the inexact Arnoldi method.

The efficiency of the inexact Arnoldi method can be improved by the use of a vari-
able tolerance for the inner solves. In fact, it is shown in [12], [23], [33] that a relaxed
tolerance inversely proportional to the eigenvalue residual norm of the desired eigenpair
can be used. Numerical experiences show that the use of variable tolerance usually leads
to reduction of total inner iteration counts by a factor up to 2. Using this observation as
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a rough estimate, we can predict with some certainty that our IRQI would still be at
least as competitive as the inexact Arnoldi method for computing a single interior ei-
genpair, if a reasonable initial eigenvector approximation is available. The superior
efficiency of IRQI can be explained by two facts: first, IRQI converges quadratically
or cubically toward the desired eigenpair, whereas the convergence of the Arnoldi
method is linear or superlinear; second, the inner solves for IRQI can be done with
moderate accuracy, as we have shown, but the inner solves usually need to be performed
with high accuracy, at least in the initial outer steps, for inexact Arnoldi. In addition,
IRQI can also be used with subspace acceleration, which may further relax the toler-
ances for the inner solves without penalty of the convergence; see, e.g., [34].

To demonstrate the refined equivalence results for the inner solves of IRQI and
single-vector JD, it is enough to use one test problem, e.g., utm1700aðbÞ. Given some
initial eigenvector approximation xð0Þ, we use FOM [22], a Krylov subspace method sa-
tisfying the Galerkin condition (4.3), to solve the linear system in IRQI (see (4.4a)), and
the correction equation of single-vector JD (see (4.4b) and (4.4c)). In Figure 6.1, eigen-
value residual norms of inner iterates are plotted against inner iteration steps. The
curves with different markers are as follows:

1. “RQI—tuning” (⋄ with solid line)—eigenvalue residual norms of ykþ1—the ap-
proximate solution of (4.4a) in the (kþ 1)th inner iteration.

2. “JD—tuning” (▿ with dashed line)—eigenvalue residual norms of xþ sk, where
sk is the approximate solution of (4.4b) in the kth inner iteration.

3. “JD—no tuning” (○ with dash-dot line)—eigenvalue residual norms of xþ sk,
where sk is the approximate solution of (4.4c) in the kth inner iteration.

TABLE 6.4
Comparison of inexact Arnoldi with inexact RQI for computing a single interior eigenpair.

problem utm1700aðbÞ mhd4800aðbÞ kðmÞ3plates
init iter xð0Þ xð0Þ xð1Þ

method AR/GCRO RQ/GMRES AR/GCRO RQ/GMRES AR/GCRO RQ/GMRES
inner tol 1e− 6 5e− 6 2.5e− 9 5e− 5 2.5e− 7 2e− 3

eigres 1.567e− 10 5.357e− 10 5.115e− 11 6.024e− 12 3.285e− 8 2.109e− 8

outer 5 3 8 3 7 2
inner 296 177 765 237 425 143

method AR/IDR RQ/IDR AR/IDR RQ/IDR AR/IDR RQ/IDR
inner tol 1e− 6 5e− 6 2.5e− 9 5e− 5 2.5e− 7 2e− 2

eigres 1.735e− 10 1.111e− 10 3.085e− 11 2.155e− 12 8.913e− 8 2.536e− 7
outer 5 3 8 9 6 3
inner 552 320 1474 639 1047 569

problem thermo dkðmÞ IFISS1 IFISS2
init iter xð1Þ xð0Þ xð0Þ

method AR/GCRO RQ/GMRES AR/GCRO RQ/GMRES AR/GCRO RQ/GMRES
inner 5e− 9 1e− 3 5e− 8 1e− 3 1e− 8 1e− 3

eigres 1.251e− 8 7.839e− 9 7.859e− 10 7.945e− 10 1.182e− 09 1.845e− 10

outer 6 2 12 3 19 3
inner 992 251 965 174 3164 409

method AR/IDR RQ/IDR AR/IDR RQ/IDR AR/IDR RQ/IDR
inner tol 5e− 9 1e− 1 5e− 8 1e− 3 1e− 8 1e− 3

eigres 3.148e− 5 — 7.699e− 10 7.659e− 10 1.669e− 09 1.511e− 10
outer 4 — 12 3 19 3
inner 943 — 1705 253 8820 954
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For all the inner solves shown above, let Q be the fixed incomplete LU preconditioner
for utm1700aðbÞ described in Table 6.1 and u be the fixed random vector used for the
projector

Π2 ¼ I −
xu�

u�x
.

In Figure 6.1(left), the solution of ðA− σBÞy ¼ Bx is obtained by FOM with a tuned
preconditioner QRQ defined in (3.9c) with p ≠ u (see “⋄ RQI—tuning (Π2 indepen-
dent)”), and Π1ðA− σBÞΠ2s ¼ −r is solved by FOM with the preconditioner
QJD ¼ Π1QRQΠ2 (see “▿ JD—tuning (Π2 independent)”) and the untuned precondi-
tioner Q (see “○ JD—no tuning”), respectively. Clearly, the curves with ⋄ and ▿ are
identical, showing that ykþ1 ¼ ηkðxþ skÞ holds for (4.4a) and (4.4c). The curve with
○ is not identical to the above two curves, because QJD ≡ Π1QRQΠ2 ≠
Π1QΠ2 ≡QJD. In Figure 6.1(right), the tuned preconditioner QRQ is defined by
(3.9c) with p ¼ u (Π2 dependent) such that QJD ¼ QJD; as a result, all the three curves
are identical, which means the equivalence result holds for (4.4a), (4.4b), and (4.4c) with
this specific QRQ.

Finally, we compare the efficiency of four different strategies as inner solvers for
IRQI. We first generate an initial eigenvector approximation x using the “seed” numbers
and size of perturbation given in Table 6.5, and apply these strategies to solve
ðA− σBÞy ¼ Bx. In Figure 6.2, eigenvalue residual norms of inner iterates are plotted
against inner iteration steps as follows:

1. “▵ GMRES – no tuning”—the GMRES algorithm with an untuned precondi-
tioner Q.

FIG. 6.1. Eigenvalue residual norms of eigenvector approximation obtained from the iterative solution of
(4.4a), (4.4b), and (4.4c). Left:QRQ is defined with p ≠ u, where p is defined in (3.9c) and u is defined in (4.1).
Right: QRQ is defined with p ¼ u.

TABLE 6.5
Seeds and size of perturbation used to generate initial eigenvector approximation for non-Hermitian

problems in Figure 6.2.

seed perturbation

utm1700aðbÞ 688261033 1e− 5
mhd4800aðbÞ 131645203 1e− 4

kðmÞ3plates 509223938 1e− 6

thermo dkðmÞ 484521866 1e− 3

IFISS1 422815323 2e− 5
IFISS2 714804650 2.5e− 4
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2. “▿ GCRO-DR”—the GCRO-DR algorithm discussed in section 5, where Q is
used in all inner iterations.

3. “□ FGMRES”—the FGMRES algorithm discussed in section 5, where in the
first inner iteartion z1 ¼ x up to a scaling factor, and a tuned preconditioner
need not be used; Q is used in all subsequent inner iterations.

4. “○ GMRES – tuning”—the GMRES algorithm with the tuned preconditioner
defined in (3.9c) with p ¼ Q−1Bx.

Obviously, the efficiency of a solution strategy can be evaluated by the rate at which the
eigenvalue residual norm of inner iterates decreases. We can see from Figure 6.2 that
both GMRES with an untuned preconditioner and the GCRO-DR algorithm discussed
in section 5 perform poorly in general, though GCRO-DR keeps x in the subspace of
candidate solutions. The FGMRES algorithm, on the other hand, is almost as efficient
as the GMRES algorithm with a tuned preconditioner for utm1700aðbÞ, mhd4800aðbÞ,
and the two IFISS problems. For kðmÞ3plates, FGMRES is less competitive than

FIG. 6.2. Eigenvalue residual norms of inner iterates obtained from four strategies for solving
ðA− σBÞy ¼ Bx.
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GMRES with a tuned preconditioner, but is still considerably more efficient than the
other two strategies. For thermo dkðmÞ, however, the performance of GMRES with a
tuned preconditioner is much worse than expected. The reason for this abnormal beha-
vior is that the matrix-vector product involving Q−1 requires the evaluation of
Q−1Bx− x, but kxk is about 1013 times as large as kQ−1Bxk for this problem; therefore
Q−1 cannot be computed accurately, and thus GMRES with this tuned preconditioner
cannot work properly. Fortunately, FGMRES does not use the tuned preconditioner
and therefore performs much better.

For the IFISS problems, especially IFISS2 with Reynolds number Re ¼ 1200, it is
worth noting that the GMRES algorithm with the untuned preconditioner outperforms
the other three solvers in the last dozens of inner iterations. Some insight into the phe-
nomenon can be obtained by the following observation. As the Reynolds number in-
creases, the right-most critical eigenvalue λ1 arising from the linear stability analysis
approaches zero from the left (see Table 6.1), and therefore the shifted matrix
A− σB arising in IRQI becomes closer to A (suppose that the Rayleigh quotient
σ≈ λ1). In this case, our experience is that the untuned least squares commutator pre-
conditioner Q [7] seems more efficient than the tuned variant Q for A− σB in the sense
of clustering eigenvalue distribution of the preconditioned coefficient matrix; see [32] for
this observation in the setting of inexact subspace iteration. As a result, the linear re-
sidual norm decreases more quickly in the asymptotic convergence phase for the untuned
preconditioned solve. On the other hand, it is suggested in [31] that for IRQI for stan-
dard Hermitian problems, the asymptotic convergence rate of solving ðA− σI Þ ¼ x by
MINRES with a tuned preconditioner may be a reasonable indication of the rate at
which the eigenvalue residual norm of inner iterates decreases. The correlation of the
two rates may also hold for non-Hermitian problems, and thus it provides some expla-
nation into the advantage of GMRES with untuned preconditioner in the later stage of
inner iterations.

In light of the performance of the four solution strategies shown in Figure 6.2, we
conclude that GMRES with a tuned preconditioner is in general the best inner solver for
IRQI. However, if numerical difficulties associated with tuning arise, the FGMRES al-
gorithm as described in section 5 can be used without significant performance penalty. In
addition, if tuning is considerably counterproductive in clustering the eigenvalues of the
preconditioned matrix, and if one needs to achieve the full convergence rate of IRQI,
then GMRES with the untuned preconditioner might also be considered.

7. Conclusions. We have studied IRQI for solving generalized Hermitian and non-
Hermitian eigenvalue problems. We show that the full convergence rates of IRQI can be
achieved if the shifted linear system is solved by a Krylov subspace method with a special
preconditioner with tuning to a reasonably small fixed tolerance. A refined equivalence
result is given for the inner solves of IRQI and single-vector JD. We then provide new
understanding of the motivation of tuning: an appropriate eigenvector approximation is
generated in the first inner iteration, and is refined in subsequent iterations where tuning
is no longer needed. We show that this motivation can be realized by alternative stra-
tegies without the use of tuning. One of the alternatives, an FGMRES algorithm with a
special configuration in the first inner step, performs as efficiently as GMRES with a
tuned preconditioner. For the eigenvalue problem under discussion, our IRQI consis-
tently outperforms the inexact Arnoldi method in efficiency.
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