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Summary. The iterative aggregation method for the solution of linear systems is
extended in several directions: to operators on Banach spaces; to the method with
inexact correction, i.e., to methods where the (inner) linear system is in turn solved
iteratively; and to the problem of finding stationary distributions of Markov operators.
Local convergence is shown in all cases. Convergence results apply to the particular
case of stochastic matrices. Moreover, an argument is given which suggests why the
iterative aggregation method works so well for nearly uncoupled Markov chains, as
well as for Markov chains with other zero-nonzero structures.
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1. Introduction and notation

Iterative aggregation refers to a class of methods, sometimes called aggregation/dis-
aggregation, which has been an effective tool for the solution of linear systems and
certain eigenvalue problems; see Cao and Stewart [2], Chatelin and Miranker [4],
[5], Haviv [15], Mandel and Sekerka [22], Miranker and Pan [30], and the references
given therein.

Briefly, the general idea is that at each step of these methods, the linear system is
replaced with a system in another (smaller) spaceF (aggregation step), this (smaller)
linear system is solved and its solution is used to improve the current iterate in the
original space (disaggregation step), often the improved iterate is used to begin one or
more relaxation steps; see Sect. 2 for a detailed description of the method we study.
Of course, the iterative aggregation method is related to the principle of the multigrid
method, but no underlying mesh or even a discretization of a differential equation is
assumed; see e.g. Mandel [21].

The idea of aggregation appeared naturally in input-output economic models,
where goods and services are aggregated (grouped together) according to certain
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economic criteria; see the survey by Vakhutinsky, Dudkin and Ryvkin [41] and the
extensive bibliography there. The iterative aggregation method was extended to other
linear systems and to the problem of finding the stationary distribution of Markov
chains; see the mentioned references and also Mandel [20], and Marek [24]. As
mentioned, there are several versions of these methods; see the surveys by Schweitzer
[33], [34], and the recent paper by Kafeety, Meyer and Stewart [16]. The method we
choose to study is the extension of the method found in Mandel and Sekerka [22].
This method is not expensive, since no solution of linear systems at the disaggregated
level are performed; only solution of systems in the (smaller) aggregated spaces are
computed.

Global convergence of the iterative aggregation method for Markov chains was
shown only for the nearly uncoupled case for the special method studied by Cao and
Stewart [2]; see also Stewart, Stewart and McAllister [35]. Local convergence for
linear systems was first proved by Mandel and Sekerka [22].

In this paper the local convergence proofs in [22] are extended in several direc-
tions. First, in Sect. 2, the iterative aggregation method is described for linear systems
on Banach spaces, examples given, and local convergence shown. Further, in Sect. 3,
local convergence is shown for the method applied to Markov operators. In our anal-
ysis of the method for Markov operators, we do not restrict ourselves to the nearly
decomposable case, as is done e.g. in [2]. Our convergence proof applies to the gen-
eral case. In Sect. 5 we relate our proof to the nearly decomposable case, as well as
to other cases.

In practice, often the linear system in the (smaller) spaceF is not solved exactly.
Instead, it is in turn solved iteratively, for example, using any of the methods in the
package MARCA [36], or the one suggested by Freund and Hochbruck [9]. This
situation is similar to inner/outer iterations or two-stage methods, see e.g. [10], [11],
[14], [19] or [38]. We call the resulting methodIterative Aggregation with Inexact
Correction. In Sect. 4, we show local convergence for the inexact method and extend
the result to Markov operators. Some preliminary results related to this paper can
be found in Marek [25] and in Marek and Szyld [27]; see also Szyld [37]. We
believe that this is the first time local convergence proofs for (exact or inexact)
iterative aggregation methods applied to general Markov chains – not necessarily
nearly decomposable – and Markov operators is given.

In Sect. 5 a new mathematical tool is presented whereby we can apply our theory
to stochastic matrices and finite Markov chains. In particular we obtain a better un-
derstanding on why the iterative aggregation method works so well when applied to
Markov chains. Numerical examples are also given.

Let E and F be Banach spaces over the field of real numbers (e.g.R
n and

R
m, m < n). Let E ′ and F ′ denote the dual space ofE and F , respectively,

and B (E ,F ) the Banach space of bounded linear operators ofE into F ; we
let B (E ) = B (E ,E ). When E = Rn, B (E ) is the space ofn × n matrices. If
T ∈ B (E ,F ) thenT ′ denotes the dual ofT , i.e., T ′ ∈ B (F ′,E ′). We further
assume thatE andF are generated by closed normal conesK andH respectively;
see e.g. Krasnosel’skii [17] or Krěın and Rutman [18]. This assumption is satisfied by
R
n by letting K = Rn

+ , the set of nonnegative vectors. An operatorA ∈ B (E ) is
calledK -nonnegative if AK ⊂ K and denotedA ≥ 0. When the identification
of the coneK is clear from the context aK -nonnegative operator is simply called
nonnegative. ForK = Rn

+ , the nonnegative operators are the nonnegative matrices;
see e.g. [1]. Let K ′ = {x′ ∈ E ′ : 〈x, x′〉 = x′(x) ≥ 0 for all x ∈ K }. It can
be shown thatK ′ is also a closed normal cone generatingE ′ [18]. An element
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x′ ∈ K ′ is called strictly positive if〈x, x′〉 > 0 wheneverx ∈ K , x 6= 0. When
E = Rn, a strictly positive vector is just a vector with positive entries.

A suitable replacement to a topological interior of a cone (IntK ) is the concept
of d-interior: K d = {x ∈ K : 〈x, x′〉 > 0 ∀x′ ∈ K ′, x′ 6= 0}. An example of
a coneK having Int K = ∅ while K d 6= ∅ is the coneL 2(0, 1)+ consisting of
all elementsx ∈ E = L 2(0, 1) having a representative ¯x ≥ 0 almost everywhere in
(0,1). If E = Rn, then K d = Int K = {x : xi > 0, i = 1, · · · , n}. By x ≥ 0 we
denotex ∈ K and call it a nonnegative element, and byx > 0 we denotex ∈ K d.
We writex ≥ y if x− y ≥ 0.

An elementx ∈ K is called extremal ifx = αy + βz, y ∈ K , z ∈ K y 6= 0,
z 6= 0, implies that eitherα = 0, β = 0, or z = γy for someγ 6= 0. The set of extremal
elements ofK is denoted by ExtK .

By ˜E we denote the complex extension ofE , i.e., ˜E = E ⊕ iE with the norm
defined by‖z‖ ˜E = sup0≤θ≤2π ‖x cosθ + y sinθ‖E wherez = x + iy, x, y ∈ E . An

operatorA ∈ B (E ) can similarly be extended tõA ∈ B ( ˜E ) by setting Ãz =
Ax + iAy, wherez = x + iy. Let A ∈ B ( ˜E ), and letµ be a complex scalar. Let
R(µ,A) = (µI−A)−1 be the resolvent operator. The complement of the resolvent set
{µ ∈ C : (µI − A)−1 ∈ B ( ˜E )} is called the spectrum ofA and denotedσ(A) [40,
p.264]. We letr(A) = max{|µ| : µ ∈ σ(A)} and call it the spectral radius ofA.

A nonnegative operatorB hasr(B) ≥ 0, and there exists an eigenvectorx ≥ 0,
called the Frobenius eigenvector, such thatBx = r(B)x; see e.g. [17], [42].

We say that the operatorA hasProperty Pif everyα ∈ σ(A) such that|α| = r(A)
is a pole of the resolvent operatorR(µ,A). We will assume throughout the paper that
the operators studied haveProperty P. It is well known that ifα is a pole of the
resolvent operator

(µI −A)−1 =
∞∑
k=0

Ak(α)(µ− α)k +
q(α)∑
k=1

Bk(α)(µ− α)−k,(1)

whereAk(α) andBk+1(α), k = 0, 1, · · · belong toB ( ˜E ), and q(α) < +∞ is the
multiplicity of α as a pole of the resolvent operator [40]. This multiplicity q is called
the index ofA with respect toα and is denoted by indαA. Thus, indαA ≥ 1.

2. Iterative aggregation

In this section we consider the solution of the linear system

Ax = b,(2)

wherex ∈ E , A ∈ B (E ), and b ≥ 0. For the solution of (2), it is customary to
consider a splittingA = M −N with M−1 ≥ 0,

T = M−1N ≥ 0,(3)

andr(T ) < 1, in which case lim
k→∞

T k = 0. Given an initial guessx(0), one can consider

an iteration process
x(k+1) = Tx(k) + c,(4)
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where c = M−1b. It is well known that the process (4) converges linearly to the
solution of (2) with asymptotic convergence factor ofr(T ); see e.g. Varga [42]. Thus,
the system (2) is equivalent tox − Tx = M−1b and, without loss of generality, we
consider operators of the formA = I − B, B ≥ 0, whereI denotes the identity
operator inE .

We discuss now the aggregation and disaggregation maps. Let us consider a
nonempty setD ⊂ E . Let the aggregation mapR ∈ B (E ,F ) be such that
RK ⊂ H , i.e., R maps nonnegative elements inE into nonnegative elements
in F , and for all x ∈ D , let the disaggregation map, which depends onx,
S(x) ∈ B (F ,E ) be such thatS(x)H ⊂ K , i.e., S(x) maps nonnegative ele-
ments inF into nonnegative elements inE . Let P (x) = S(x)R andIF the identity
operator inF . We assume that for everyx ∈ D the following two relations hold

RS(x) = IF ,(5)

P (x)x = S(x)Rx = x.(6)

It follows from (5) that [P (x)]2 = P (x), i.e., thatP (x) is a projection onE . Relations
(5) and (6) are quite natural and, as we will point out in the next section, they
guarantee that in the case of Markov chains the aggregated matrix is also stochastic.
Before describing the iterative aggregation method we present several examples of
aggregation and disaggregation maps.

Example 2.1.Let E = R
n, F = R

m, 1 ≤ m ≤ n and partition the index set
into m nonempty and disjoint sets{1, · · · , n} = G1 ∪ · · · ∪ Gm. Definez = Rx as
zi =

∑
j∈Gi

xj , and [S(x)z]j = zixj/(
∑

`∈Gi
x`) if j ∈ Gi and zero otherwise. Here

D = {x ∈ E : x ≥ 0, Rx > 0}. Thus,R is anm× n matrix whose columns have a
single nonzero entry and this entry is a one, e.g. of the form

R =

 1 0 0 0 0 1 0
0 1 0 1 0 0 1
0 0 1 0 1 0 0

 .(7)

Similarly, S(x) is a n ×m nonnegative matrix with a single nonzero per row. It is
easy to see that these maps satisfy (5) and (6). This basic example is Method (a) in
Haviv [15] and also appears in other references, e.g. Chatelin [3], Schweitzer [33].

Example 2.2.Let E = `1, F = Rn. Let N = {1, 2, · · ·} be the natural numbers and
let g : N → {1, · · · , n} be given. LetGi = {j ∈ N : g(j) = i}. Define z = Rx as
zi =

∑
j∈Gi

xj , and [S(x)z]j = zixj/(
∑

`∈Gi
x`) if j ∈ Gi and zero otherwise. Let

`1
+ = {x ∈ `1 : xj ≥ 0, j ∈ N}. HereD = {x ∈ `1

+ :
∑

j∈Gi
xj > 0, i = 1, · · · , n}.

Example 2.3.Let E = Q[0, 1], whereQ[0, 1] is the space of piecewise continuous
functions on [0, 1], i.e., of functionsx : [0, 1] → R such that there exists a finite
number of points 0 =t0 < t1 < · · · < tk = 1 such that the restrictionx|[tj−1,tj ]
is continuous and bounded on (tj−1, tj), j = 1, · · · , k = k(x), with the norm‖x‖ =
max{|x(t)|, t ∈ [0, 1]}. Let F = Rn, and we selectn + 1 distinct points 0 =s0 <
s1 < · · · < sn = 1. Definez = Rx, zi =

∫ si
si−1

x(s)ds, i = 1, · · · , n, andS(x)w = v,
v(s) = [1/(Rx)i]wix(s) if si−1 ≤ s ≤ si. Here D = {x ∈ E : x ≥ 0, Rx > 0}.
We note that in the integral definingR, any positive Radon measure on [0, 1] can be
used.
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Example 2.4.Let Ω = [a, b] × [c, d] ⊂ R
2. Let E = L 2(Ω), andF = L 2([a, b]).

Define (Ru)(s) =
∫ d
c
u(s, t)dt, andS(u)z = [1/(Ru)(s)]z(t)u(s, t). HereD = {u ∈

E : u ≥ 0,
∫ d
c
u(s, t)dt > 0}. In this example, letB ∈ B (E ) be defined by a kernel

a(s, t, s′, t′), i.e.,Bu =
∫
Ω
a(s, t, s′, t′)u(s′, t′)ds′dt′, and we have thatBL 2 ⊂ Q[Ω],

whereQ[Ω] is the space of piecewise continuous functions onΩ. We note thatΩ
need not be a rectangle, we can considerΩ = Ω1×Ω2, Ωi ⊂ R, i = 1, 2, and that we
can also considerΩ1 ⊂ R2, Ω2 ⊂ R, Ω ⊂ R3, namely a “cylinder”.

Let BF (x) = RBS(x) be the aggregated operator and assume further that
BF (x) ≥ 0, i.e., thatBF (x)H ⊂ H , and thatr(BF (x)) < 1 for all x ∈ D .
We define the following

Algorithm 2.5 (Iterative Aggregation). Given a nonnegative operatorB, b ≥ 0, an
initial guessx(0), and a convergence parameterε > 0, let k = 0.

1. Solve the (aggregated) equation

z −BF (x)z = Rb.(8)

with x = x(k) and call the solutionz(k).
2. Disaggregate and iterate according to the formulax(k+1) = BS(x(k))z(k) + b.
3. Test if ‖x(k+1) − x(k)‖ < ε (or other convergence test). If yes, STOP; otherwise
k := k + 1 and go to 1.

In the case of (3), the operator in (8) isTF (x) = RM−1NS(x). If E = R
n,

F = Rm, 1≤ m ≤ n, TF (x) can be computed withm solutions of a linear system
with coefficient matrixM . These solutions can be efficiently computed, depending on
the choice ofM , and this has to be taken into account when evaluating the suitability
of the method.

In order to analyze the convergence of the iterative aggregation method, we can
express each iteration in terms of the elements of the original spaceE as

x(k+1) = BU (x(k)) + b,(9)

where
U (x) = S(x)[IF −BF (x)]−1Rb.(10)

Let x? be the solution of (2). Thus,R(I−B)x? = Rb, and using the relations (5) and
(6), it follows that

U (x?) = x?.(11)

It is immediate that the method is consistent, i.e., thatx? = BU (x?)+b. In the following
theorem, the local convergence properties of the iterative aggregation method are
shown. The proof resembles that of Marek [24]; cf. also Mandel and Sekerka [22].
In the proof here, and in the other convergence theorems in the paper, we use the
fact that the spectral radius of the Jacobian of the map is less than unity in a whole
neighborhood around the solution.

Theorem 2.6. LetR ∈ B (E ,F ) , RK ⊂ H . Let W ⊂ E be a subspace such
that ‖x‖ ≤ ‖x‖W , for all x ∈ W . Let D be a nonemptyW -open set such that
x? ∈ D , S(x) ∈ B (F ,E ), S(x)H ⊂ K , S(x) is W -continuous, for allx ∈ D ,
and (5) and (6) hold for allx ∈ D . Let r(B) < 1 andr(BF (x)) < 1 for all x ∈ D .
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Moreover, letU defined in (10) be such thatBU (x) + b ∈ D wheneverx ∈ D . Let
there be a positive numberβ such thatr(J(x?)) ≤ β < 1, where

J(x) = J(B, x) = B[I − P (x)B]−1[I − P (x)].(12)

Then, the iterative aggregation method, i.e., the iteration process (9), isW -locally
convergent, i.e., there exists aW -open neighborhoodU of x? such that

lim
k→∞

‖x(k) − x?‖ = 0 for anyx(0) ∈ U .(13)

The speed of convergence is characterized by the estimates

‖x(k) − x?‖ ≤ ‖x(k) − x?‖W ≤ κρk(14)

whereρ = r(J(x?)) + η < 1, for someη > 0 andκ independent ofk.

Proof. The conditionr(BF (x)) < 1, together with (5) and (6) imply the following
relations

[IF −BF (x)]−1 =
∞∑
k=0

[RBS(x)]k = R
∞∑
k=0

[P (x)B)]kS(x),(15)

S(x)[IF −BF (x)]−1R = [I − P (x)B]−1P (x),(16)

[I − P (x)B]−1 = I + [I − P (x)B]−1P (x)B,

J(x) = B{I − [I − P (x)B]−1P (x)(I −B)}
= B{I − S(x)[IF −RBS(x)]−1R(I −B)}.(17)

It follows from the last equation, (5) and (6) that

J(x)x = 0.(18)

We replaceb = (I −B)x? in (10) and use (11), (17) and (18) to write

BU (x) −BU (x?) = BS(x)[IF −RBS(x)]−1R(I −B)x? −Bx? = −J(x)x?

= J(x)(x− x?).(19)

Let ζ > 0 be arbitrary. It is well known that there is a norm‖.‖ζ equivalent to the
norm ‖.‖W such that

‖J(x?)‖ζ ≤ r(J(x?)) + ζ ;(20)

see, e.g., [29, p.55]. TheW -continuity ofS(x) implies theW -continuity of J(x).
Thus, for a givenε > 0 there is aδ > 0 such that‖J(x) − J(x?)‖ζ < ε as soon as
‖x− x?‖ζ < δ. According to (19) and (20) this implies that

‖BU (x) −BU (x?)‖ζ ≤ [r(J(x?)) + ε + ζ] ‖x− x?‖ζ .(21)

Thus the mapBU (x) is contractive in a neighborhoodU of x?. Since all iterates
x(k) ∈ D ⊂ W , the iterative process (9) isW -convergent. The equivalence of the
norms‖.‖W and‖.‖ζ together with (21) imply the desired result (14). ut
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We point out that in Algorithm 2.5, step 2, more than one relaxation step can be
taken, and the convergence proof can be carried out in an analogous way.

Mandel and Sekerka [22] showed that for the Example 2.1, the hypothesis
r(J(x?)) ≤ β < 1 holds. The same arguments can be used to extend the result to
Example 2.2. In what follows we show the same for Example 2.4. In this case we have
E ′ = E andB′u =

∫
Ω
a(s, t, s′, t′)u(s, t) ds dt. We assume that there isu0 ∈ K d

(the d-interior of the coneK ) and 0< α < 1 such that

B′u0 ≤ αu0.(22)

It follows that r(B) ≤ α < 1; see e.g. [26]. Let us assume first thatx? ∈ K d. We
defineD ∈ B (E ) as (Df )(s, t) =

√
u0(s, t)/x?(s, t)f (s, t). Let v = Dx? = D−1u0,

G = DJ(x?)D−1, E = DBD−1, andQ = DP (x?)D−1. Of course,Q2 = Q. We
show now thatQ′ = Q which implies that it is an orthogonal projection. To that
end, first note that sinceP (x?)x? = x?, we have thatP (x?)D−2 = D−2. Given
x, y ∈ E arbitrary, letψ = Dx, η = Dy. Then 〈Qx, y〉 = 〈DP (x?)D−2ψ,D−1η〉 =
〈D−1ψ,D−1η〉 = 〈x,Qy〉. We introduce the norm‖T‖v = inf{λ ≥ 0 : λv − Tv ∈
K }. It follows from (22) that

E′v = D−1B′DD−1u0 ≤ αD−1u0 = αv

and thus‖E′‖v ≤ α. Sinceb ≥ 0, andBx? + b = x?, we have thatBx? ≤ x? and
thusEv ≤ v which implies that‖E‖v ≤ 1. Therefore

‖E‖2 ≤ r(E′E) ≤ ‖E′E‖v ≤ ‖E′‖v‖E‖v ≤ α.

The fact thatr(J(x?)) = r(G) ≤ ‖E‖ ≤ α1/2 < 1 is a consequence of the following
lemma, whose proof can be found in Mandel and Sekerka [22].

Lemma 2.7. LetQ ∈ B (E ) be an orthogonal projection. LetE ∈ B (E ) such that
‖E‖ < 1, andG = E(I −QE)−1(I −Q). Thenr(G) ≤ ‖E‖.

Using the continuity ofJ , the case wherex? /∈ K d, x? ∈ K , can be treated as a
limiting case.

3. Iterative aggregation for Markov operators

We say that an operatorB ∈ B (E ), B ≥ 0 is a Markov operator corresponding to
x̂′ ∈ K ′ strictly positive if for allx ∈ K the following equality holds

〈Bx, x̂′〉 = 〈x, x̂′〉.(23)

Proposition 3.1. LetB be a Markov operator corresponding tôx′. Let 1 be a pole of
the resolvent operator, thenr(B) = 1 and ind1B = 1.

Proof. SinceB is a Markov operator corresponding to the strictly positive element
x̂′ ∈ K ′, it follows that 〈u, x̂′〉 > 0 for all u ∈ K , u 6= 0 and〈Bx, x̂′〉 = 〈x, x̂′〉,
for all x ∈ K . Let x0 6= 0, x0 ∈ K be the Frobenius eigenvector ofB. Then,

0< r(B)〈x0, x̂
′〉 = 〈Bx0, x̂

′〉 = 〈x0, x̂
′〉,
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thusr(B) = 1.
Let q > 1 be the multiplicity of the pole of the resolvent operator. Then there exists
y ∈ K , y 6= 0, such that 0≤ (I −B)q−1y 6= 0; see e.g. Marek [23]. Then

0< 〈(I −B)q−1y, x̂′〉 = 〈(I −B)q−2y, x̂′ −B′x̂′〉 = 0.

The contradiction impliesq = 1. ut
We note that the essential condition in Proposition 3.1 is that there existsu 6= 0,

u ∈ K , such thatBu ≤ αu, for someα > 0, and somex′0 ∈ K ′, x′0 = Bx′0, such
that 〈u, x′0〉 > 0. Sufficient conditions for this to hold are (i) thatu ∈ K d, or (ii)
thatx′0 be strictly positive.

When E = R
n, K = R

n
+ , x̂′ is usually taken as the vectore = (1, 1, · · · , 1)T

and the Markov operator corresponding toe is usually a transition matrix of a finite
Markov chain. In this case, the condition (23) is simplyBTe = e, i.e., the matrixB
is column stochastic.

In this section we consider a Markov operatorB corresponding to ˆx′ and the
problem of finding a stationary distribution ofB, i.e., we wish to solve

Bx = x, 〈x, x̂′〉 = 1.(24)

The second equation in (24) can be seen as the normalization ofx corresponding to
x̂′. In the case of finite Markov chains, i.e., in Example 2.1, with ˆx′ = e, the element
x represents probabilities and〈x, e〉 =

∑n
j=1xj = 1. Similarly, in infinite Markov

chains (Example 2.2)〈x, ê〉 =
∑∞

j=1xj = 1, where ˆej = 1, j = 1, 2, · · ·
Before describing the iterative aggregation method for Markov operators we need

to understand what is the appropriate aggregated problem to solve in the (smaller)
spaceF . The following lemma states that given a Markov operator with respect to
x̂′, under certain conditions, one can choose an element ˜x′ in the dual space of the
(smaller) spaceF in such a way that the aggregated operator is a Markov operator
with respect to ˜x′. The condition required is that

〈P (u)x, x̂′〉 = 〈x, x̂′〉,(25)

for all u ∈ D and for allx ∈ K .
We first show that for finite and infinite Markov chains (Examples 2.1 and 2.2),

condition (25) holds. From the definitions of the aggregation and disaggregation maps
it follows that

[S(u)Rx]j =
uj
∑

`∈Gi
x`∑

`∈Gi
u`

, if j ∈ Gi,

thus
∑

j∈Gi
[S(u)Rx]j =

∑
`∈Gi

x`, and therefore

〈S(u)Rx, e〉 =
∑
j

[S(u)Rx]j =
m∑
i=1

∑
j∈Gi

[S(u)Rx]j =
∑
j

xj = 〈x, e〉,

where the
∑

j is from 1 ton in Example 2.1 and from 1 to∞ in Example 2.2 (and
e should be interpreted as ˆe in the latter case).



Local convergence of the iterative aggregation method 69

Lemma 3.2. Let D ⊂ E . Let R ∈ B (E ,F ), RK ⊂ H , S(x) ∈ B (F ,E ),
S(x)H ⊂ K , for all x ∈ D , and (5) and (6) hold for allx ∈ D . Assume further that
(25) holds for allu ∈ D and allx ∈ K . LetB be a Markov operator corresponding
to x̂′. Then there exists̃x′ = x̃′(u) ∈ F ′ strictly positive onH such thatBF (u) =
RBS(u) is a Markov operator corresponding tõx′. Thus there exists a stationary
distribution w̃ ∈ H , i.e.,RBS(u)w̃ = w̃, and〈w̃, x̃′〉 = 〈S(u)w̃, x̂′〉 = 1.

Proof. Fix u ∈ D . Let x̃′ = S(u)′x̂′. Then for anyw 6= 0, w ∈ H , 〈w, x̃′〉 =
〈S(u)w, x̂′〉 > 0. Using the Markov property ofB and (25) we have that for all
w ∈ F

〈w, x̃′〉 = 〈S(u)w, x̂′〉 = 〈S(u)w,B′x̂′〉 = 〈P (u)BS(u)w, x̂′〉
= 〈RBS(u)w, S(u)′x̂′〉 = 〈BF (u)w, x̃′〉. ut

We note that if ˜x′ = S(u)′x̂′, then it follows from (25) thatR′x̃′ = x̂′.
In the case of a finite Markov chain, given a vectoru, Lemma 3.2 says that the

aggregated matrixRBS(u) is a Markov operator with respect to ˜e = S(u)Te. But

ẽj = [S(u)Te]j =
∑
`∈Gi

u`/
∑
`∈Gi

u` = 1, if j ∈ Gi.

In other words, ifB is column stochastic inRn, the aggregated matrixRBS(u) is
column stochastic inRm, for all u ∈ D . This is in contrast to some aggregation or
disaggregation maps other than the ones defined in Example 2.1, where the aggregated
matrix is not necessarily column stochastic; see e.g. [6], [16], [33], [34].

Let w be the solution of (24). One can find this stationary distribution by solving
the problem with another operatorT , T ≥ 0, T a Markov operator havingw as a
stationary distribution. For example, this is the case ifT is a polynomial inB with
nonnegative coefficients. Also, if such operatorT is given, any power ofT plays the
same role. In this case, the aggregated problem is

TF (x)z = z, 〈z, x̃′〉 = 1,(26)

where TF (x) = RTS(x), cf. (8). In light of Lemma 3.2, (26) has a solution for
x̃′ = S(x)′x̂′. Thus we have the following

Algorithm 3.3 (Iterative Aggregation for Markov Operators). Given a Markov
operatorT with respect to ˆx′, an initial guessx(0), and a convergence parameter
ε > 0, let k = 0.

1. Solve the (aggregated) equation (26) withx = x(k) and call the solutionz(k).
2. Disaggregate and iterate according to the formulax(k+1) = TS(x(k))z(k).
3. Test if ‖x(k+1) − x(k)‖ < ε (or other convergence test). If yes, STOP; otherwise
k := k + 1 and go to 1.

Sincer(T ) = 1 andr(TF (x)) = 1 we cannot write (10), and the proof of the local
convergence of the iterative aggregation method for Markov operators is more com-
plicated than that in the previous section. We associate withT (or B) an operatorV ,
which we callcoreoperator, satisfyingV ≥ 0 andr(V ) < 1, and elementsb(j) ∈ K ,
j = 1, · · · , k such that for some powerp, we have the following decomposition

T px = V x +
k∑
j=1

〈x, x̂′j〉b(j), x̂′j ∈ K ′, x̂′ =
k∑
j=1

x̂j
′.(27)
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This is a theoretical development and even though this construction may be pos-
sible in practice, it is not used in Algorithm 3. The elementsb(j) ∈ K have to be
small enough so thatV ≥ 0. Poĺak [32] showed that for Example 2.1 andT = B one
can choosep = 1 andk = 1 by choosingb = b(1) such thatbj = mini(Bei)j , where
ei = (0, · · · , 1, · · · , 0)T. If w ∈ K is a stationary distribution ofT , i.e. if

Tw = w, 〈w, x̂′〉 = 1,(28)

then it follows from (27), that givenV , the elementb can be found simply byb =
w − V w; see further Lemmas 5.1 and 5.3.

The decomposition (27) allows us to work with the core operatorV , whose powers
converge to zero and leave aside the other part ofT (or T p), which is essentially a
finite rank update. Additionally, for some cases we can explicitly findC ∈ B (F ,E )
such that

T = V +CR(I − V ).(29)

For example, in the rank-one case, following Polák [32], we can define

Cz =
1

〈b, x̂′〉 〈z, x̃
′〉b.(30)

The vectorb plays the role of the right hand side corresponding to a solution of a
linear system of the form

(I − V )w = b(31)

and the theory developed in Sect. 2 can be tacitly applied. In Sect. 5 we show explicitly
the decomposition (27) for stochastic matrices, i.e. for Example 2.1. The matrixC
for stochastic matrices can be defined also as in (30); cf. Lemma 5.3.

We will see later that the analogous operator toJ(x) in (12) corresponding to
Algorithm 3.3 is

J̄(x) = T [I − P (x)V ]−1[I − P (x)].(32)

In the following lemma, we show that the operatorT in (32) can be replaced by the
associated core operatorV . We note that from the identities (15)–(17) it follows that
the conditionr(P (x)V ) < 1 is equivalent to the natural conditionr(RV S(x)) < 1.

Lemma 3.4. Let V ∈ B (E ), V ≥ 0, r(V ) < 1. Let D ⊂ E . LetR ∈ B (E ,F ),
RK ⊂ H , S(x) ∈ B (F ,E ), S(x)H ⊂ K , for all x ∈ D , and (5) and (6) hold
for all x ∈ D . Assume further thatr(P (x)V ) < 1 for all x ∈ D , and that there exists
C ∈ B (F ,E ) such that (29) holds. Then

J̄(x) = V [I − P (x)V ]−1[I − P (x)].(33)

Proof. It follows from (29) that

V [I − P (x)V ]−1[I − P (x)]

= [T − CR(I − V )][I − P (x)V ]−1[I − P (x)].

However, since by (5)R[I − P (x)] = 0 we have that

R(I − V )[I − P (x)V ]−1[I − P (x)]

= R[I − P (x)V + P (x)V − V ][I − P (x)V ]−1[I − P (x)]

= R[I − P (x)] = 0,

and the proof is complete. ut
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By comparing (33) with (12) we see that̄J(x) = J(V, x), that is, the Jacobian
corresponding toT (orB) with r(T ) = 1 is the same as that of the iterative aggregation
for (31) with r(V ) < 1.

In the following lemma, we establish a relation between the disaggregated iterate
and the elementb, cf. (9) and (10). The elementwo corresponds to the last iterate
andwn to the new one.

Lemma 3.5. Let V ∈ B (E ), V ≥ 0, r(V ) < 1. Let D ⊂ E . LetR ∈ B (E ,F ),
RK ⊂ H , S(x) ∈ B (F ,E ), S(x)H ⊂ K , for all x ∈ D , and (5), (6) and
r(P (x)V ) < 1 hold for all x ∈ D . LetB be a Markov operator corresponding tôx′.
Letw ∈ K satisfy (24), i.e. letw be a stationary distribution ofB, and letb = w−V w.
Assume that ifRBS(u)w̃ = w̃, w̃ ∈ H , 〈S(u)w̃, x̂〉 = 1, for all u ∈ D , i.e., assume
that if w̃ is a stationary distribution of the aggregated operator, cf. Lemma 3.2, then

w̃ −RV S(u)w̃ = Rb.(34)

Then for anywo ∈ D andwn defined aswn = TS(wo)w̃, the following identity holds

wn = T [I − P (wo)V ]−1P (wo)b.

Proof. We write w̃ = [I − RV S(wo)]−1Rb and by using (16) with the appropriate
operators, the lemma follows. ut

The next lemma sets the stage for the local convergence proof of Algorithm 3.3.

Lemma 3.6. Let the hypotheses of Lemma 3.5 hold. Assume further thatTw = w for
someT ∈ B (E ), T ≥ 0, r(T ) = 1. Then

w = T [I − P (x)V ]−1P (x)b + T [I − P (x)V ]−1[I − P (x)]w,(35)

and

wn − w = T [I − P (wo)V ]−1[I − P (wo)](wo − w).

Proof. We have that

w = Tw = T [I − P (x)V ]−1[w − P (x)V w]

= T [I − P (x)V ]−1[P (x)(I − V )w +w − P (x)w]

= T [I − P (x)V ]−1{P (x)b + [w − P (x)w]}
= T [I − P (x)V ]−1P (x)b + T [I − P (x)V ]−1[I − P (x)]w,

which is the required identity (35). By Lemma 3.5, the identity (35), and the relation
(5) with x = wo,

wn − w = T [I − P (wo)V ]−1P (wo)b + T [I − P (wo)V ]−1[I − P (wo)]wo

−T [I − P (wo)V ]−1P (wo)b− T [I − P (wo)V ]−1[I − P (wo)]w

= T [I − P (wo)V ]−1[I − P (wo)](wo − w),

and the proof is complete. ut
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Theorem 3.7. LetR ∈ B (E ,F ) , RK ⊂ H , andS(x) ∈ B (F ,E ). LetW ⊂
E be a subspace such that‖x‖ ≤ ‖x‖W for all x ∈ W . Let D be a nonempty
W -open set such thatS(x)H ⊂ K , S(x) is W -continuous for allx ∈ D , and
(5) and (6) hold for allx ∈ D . LetB ∈ B (E ) be a Markov operator with respect to
x̂′ ∈ K ′, with a stationary distributionw satisfying (24), such thatRw ∈ H d. Let
V ∈ B (E ), V ≥ 0, r(V ) < 1. Let b = w− V w, b ∈ K be such that0 6= b ≤ Tx for
all x ∈ Ext K , 〈x, x̂′〉 = 1. Assume thatr(P (x)V ) ≤ α < 1, for someα ∈ R, 0< α,
and thatRBS(x)w̃ ∈ D wheneverx ∈ D and w̃ = RBS(x)w̃ ∈ H . Moreover,
assumeb + V S(x)[I − RV S(x)]−1Rb ∈ D wheneverx ∈ D . Let there be aβ ∈ R,
0 < β < 1, such thatr(J̄(w)) ≤ β, whereJ̄(w) is defined in (32). Then, Algorithm
3.3 isW -locally convergent, i.e., there exists aW -open neighborhoodU ofw such
that

lim
k→∞

‖x(k) − w‖ = 0 for x(0) ∈ U .

The speed of convergence is characterized by the estimates

‖x(k) − w‖ ≤ ‖x(k) − w‖W ≤ κρk

whereρ = r(J̄(w)) + η < 1, for someη > 0 andκ independent ofk.

Proof. By the way we defineb, we can writeBx = V x + 〈x, x̂′〉b. We see that all
hypotheses of Lemmas 3.5 and 3.6 are satisfied forT = B. Let ζ > 0 be arbitrary. It
is well known that there is a norm‖.‖ζ equivalent to the norm‖.‖W such that

‖J̄(w)‖ζ ≤ r(J̄(w)) + ζ ;(36)

see, e.g., [29, p.55]. By Lemma 3.6 we have that

‖xk+1 − w‖ζ ≤ ‖J̄(xk+1)‖ζ ‖xk − w‖ζ ≤ · · · ≤
≤ ‖J̄(xk+1)‖ζ · · · ‖J̄(x0)‖ζ ‖x0 − w‖ζ .

The W -continuity of S(x) implies theW -continuity of J̄(x). Thus, there exists a
W -open neighborhoodU of w such that ifx(0) ∈ U , then

‖J̄(xk)‖ζ ≤ r(J̄(w)) + ζ + η

with someη > 0 independent ofk, and, as in Theorem 2.6, the theorem follows.ut
The hypotheses of Theorem 3.7 usually hold in practice. In particular, in Sect. 5,

this is shown for Example 2.1.

4. Inexact correction

In practice, the system (8) is often solved iteratively. A splittingIF − BF (x) =
F (x) − G(x) is used, whereH(x) = F (x)−1G(x) ≥ 0 and r(H(x)) < 1; see e.g.
the different options in the package by W. Stewart [36] or in the paper [28] and the
references given therein. A certain number, says, of iterations is performed and (8)
is replaced by

z(k)
0 = Rx(k)

for j = 0, · · · , s− 1

z(k)
j+1 = H(x(k))z(k)

j + F (x(k))−1Rb(37)
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Thus,

z(k)
s = H(x(k))sRx(k) +

s−1∑
j=0

H(x(k))jF (x(k))−1Rb.

The iterative aggregation method with inexact correction for the solution of the linear
system (2) can then be expressed in terms of the elements ofE as

x(k+1) = BU (s)(x(k)) + b,(38)

where

U (s)(x) = S(x)[H(x)sRx +
s−1∑
j=0

H(x)jF (x)−1Rb];(39)

cf. [10], [19]. From the consistency of the iterative process (37) it follows the con-
sistency of the method (38), see, e.g. Varga [42], and in particular

U (s)(x?) = x?.(40)

We remark that the splittingF (x)−G(x) can be taken asF (x) = IF andG(x) =
BF (x) and all our results apply also to this particular case.

We also point out that the number of iterations in (37) can vary from one step to
the next, i.e.,s = s(k). The following local convergence result applies to this general
case as long ass(k) ≥ ŝ, k = 0, · · · In other words, we show that if the number
of inner iterations is large enough, the overall methods converges; cf. Nichols [31].
In Lanzkron, Rose and Szyld [19], and in Frommer and Szyld [10], [11], similar
situations are studied. In those references, unlike here, conditions for convergence for
any number of inner iterations are prescribed. The splitting induced by the operator
J(x) is not necessarily regular, cf. [19], and therefore such conditions do not hold
here; nevertheless see the comment before Algorithm 4.2.

Theorem 4.1. Let the hypotheses of Theorem 2.6 hold. LetIF −BF (x) = F (x)−G(x)
be a splitting, i.e.,F (x)−1 ∈ B (E ), and letH(x) = F (x)−1G(x) ≥ 0 with

r(H(x)) ≤ µ < 1 for all x ∈ D .(41)

Then, there is âs such that ifs ≥ ŝ, the iteration process (38) isW -locally convergent,
i.e., there exists aW -open neighborhoodU of x? such that (13) holds. The speed
of convergence is characterized by the estimates (14) whereρ = r(J(x?)) + η < 1, for
someη > 0 andκ independent ofk.

Proof. Let

J (s)(x) = B

I − S(x)H(x)sRx + S(x)
s−1∑
j=0

H(x)jF (x)−1R(I −B)

 .(42)

Note thatJ (s)(x) = γ(x) + Λ(x) is an affine operator in the sense thatJ (s)(x)u =
γ(x) +Λ(x)u. It follows, using (5) and (6), that

J (s)(x)x = −BS(x)H(x)sRx +B

x− S(x)
s−1∑
j=0

H(x)jF (x)−1R(I −B)S(x)Rx


= −BS(x)H(x)sRx +B[x− S(x)(IF −H(x)s)Rx] = 0.(43)
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We replaceb = (I −B)x? in (39) and use (40), (42) and (43) to write

BU (s)(x) −BU (s)(x?) = BS(x)

H(x)sRx +
s−1∑
j=0

H(x)jF (x)−1R(I −B)x? −Bx?


= −J (s)(x)x? = J (s)(x)(x− x?).(44)

The hypothesis (41) implies that

∞∑
j=0

H(x)j = [IF −BF (x)]−1F (x).(45)

Comparing (42) with (17), we obtain

lim
s→∞ J (s)(x) = J(x).(46)

Let ζ andξ be arbitrary. From (41) it follows that the rate of convergence of the partial
sums in (45), as well as of the sequenceH(x)s → 0, can be bounded independent of
x. Thus, there exists a ˆs = ŝ(ξ) independent ofx such that

‖J (s)(x) − J(x)‖ζ < ξ for s ≥ ŝ,

where‖.‖ζ is the norm equivalent to the norm‖.‖W for which (20) holds. Thus,
using the same arguments as in Theorem 2.6 we have that

‖BU (s)(x) −BU (s)(x?)‖ζ ≤ [r(J(x?)) + ε + ξ + ζ] ‖x− x?‖ζ
and the theorem is proved. ut

In a way analogous to the one described earlier in the section, often in practice, the
aggregated Markov problem (26) is not solved exactly. Instead, an iterative method is
used, and the (inner) process is stopped after a certain number of (inner) iterations, or,
equivalently, after certain (inner) convergence criteria is satisfied. Here, we choose to
stop the number of inner iterations if the residual is small enough, this is done, e.g. in
Elman and Golub [8] and Golub and Overton [13], [14]. Thus we have the following
Iterative Aggregation with Inexact Correction Algorithm for Markov Operators

Algorithm 4.2. Given a Markov operatorT with respect to ˆx′, an initial guessx(0), in-
ner convergence parametersεk > 0, k = 0, 1, · · ·, and a global convergence parameter
ε > 0, let k = 0.

1. Let j = 0 andz(k)
0 = Rx(k).

2. Computez(k)
j+1 = H(x(k))z(k)

j , 〈S(x(k))z(k)
j+1, x̂

′〉 = 1
whereH(x) = F (x)−1G(x) ≥ 0, andIF −RTS(x) = F (x) −G(x).

3. Test if ‖z(k)
j+1 −H(x(k))z(k)

j+1‖ < εk. If yes, letz(k) = z(k)
j+1,

otherwise, letj := j + 1 and go to 2.
4. Disaggregate and iterate according to the formulax(k+1) = TS(x(k))z(k).
5. Test if ‖x(k+1) − x(k)‖ < ε (or other convergence test). If yes, STOP; otherwise
k := k + 1 and go to 1.
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Theorem 4.3. Let the hypotheses of Theorem 3.7 hold. In addition, let
IF −RBS(x) = F (x)−G(x) be a regular splitting, i.e.,F (x)−1 ≥ 0 andG(x) ≥ 0.
LetH(x) = F (x)−1G(x) be such thatr(H(x)) < 1 for all x ∈ D . Let εk > 0 be such
that ‖z(k) −H(x(k))z(k)‖ < εk implies

‖u(k)‖ζ < ν‖x(k) − w‖ζ(47)

whereRu(k) = z(k) − RV S(x(k))z(k), the norm‖.‖ζ is the norm equivalent to‖.‖W
such that (36) holds, and whereν > 0 is such thatβ + ν < 1. Then, Algorithm 4.2 is
W -locally convergent, i.e., there exists aW -open neighborhoodU of w such that

lim
k→∞

‖x(k) − w‖ = 0 for x(0) ∈ U .

The speed of convergence is characterized by the estimates

‖x(k) − w‖ ≤ ‖x(k) − w‖W ≤ κρk

whereρ = r(J̄(w)) + η + ν < 1, for someη > 0 andκ independent ofk.

Proof. Let v(k) = z(k) −H(x(k))z(k). Then

Fz(k) −Gz(k) = Fv(k) = z(k) −RBS(x(k))z(k).

Therefore we see thatz(k) −RV S(x(k))z(k) −Rb = Fv(k), and also that

x(k+1) = B[I − P (x(k))V ]−1[P (x(k))b + S(x(k))Fv(k)].

It follows that

x(k+1) − w = J̄(x(k))(x(k) − w) +B[I − P (x(k)V ]−1S(x(k))Fv(k).

SinceRu(k) = Fv(k), we deduce that

‖x(k+1) − w‖ζ ≤ ‖J̄(x(k))‖ζ ‖x(k) − w‖ζ + ‖u(k)‖ζ .

Since by our hypothesis, as in Theorem 3.7,‖J̄(x(k))‖ζ ≤ ρ(J̄(x(k)))+ζ +η with some
η > 0 independent ofk, and by (47), the theorem follows. ut

5. Applications to stochastic matrices

In this section we study in more detail stochastic matrices, i.e., Example 2.1. We
exhibit an associated zero convergent core matrixV , and illustrate the iterative ag-
gregation method with some numerical experiments.

Let E = Rn, K = Rn
+ and letB be a stochastic matrix, i.e., a Markov operator

corresponding to the vectore ∈ Rn, eT = (1, · · · , 1). Let

B = E

 F0 0 . . . 0
G1 F1 . . . 0
. . . . . .
Gr 0 . . . Fr

ET(48)
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be a representation ofB in which the square diagonal blocksFj are of ordernj with
r∑
j=0

nj = n. The matricesFj are irreducible for 1≤ j ≤ r, r(F0) < 1, andE is a

permutation matrix; see e.g. Gantmacher [12]. Ifw ∈ Rn
+ is any stationary probability

vector of B, i.e., if Bw = w, 〈w, e〉 = 1, it follows immediately that ˆw = ETw
is a stationary probability vector ofETBE. Moreover, sincer(F0) < 1, then, this
stationary probability vector has the form

ŵT = (0, ŵ1, · · · , ŵr) ,(49)

whereŵj ∈ Rnj , j = 1, · · · , r. The firstn0 components of ˆw, which are zero, are said
to correspond to the transient state. The other components are said to correspond to
the ergodic states.

Let F̂j = 1
2(I + Fj), 0≤ j ≤ r. Let t̂ be any positive integer such that

T =

[
1
2

(I +B)

]t̂
= E


F̂ t̂

0 0 . . . 0
Ĝ1 F̂ t̂

1 . . . 0
. . . . . .

Ĝr 0 . . . F̂ t̂
r

ET(50)

has its diagonal blockŝF t̂
j strictly positive for 1≤ j ≤ r. It is well known that we

may choosêt = max{tj : 1 ≤ j ≤ r}, where 1≤ tj ≤ n2
j − 2nj + 2; see e.g. Varga

[42, p.42]. It is easy to see thatBw = w if and only if Tw = w, i.e.,w ∈ Rn
+ is a

probability stationary vector forB if and only if it is for T . Therefore, the permuted
probability stationary vector ofT , ETw = ŵ has the same form (49).

The following lemma provides the existence of a core matrixV associated with
T of the form (50), with the appropriate choice of the exponentt̂.

Lemma 5.1. Let B be a column stochastic matrix represented as in (48). LetT be
defined as in (50), and letw be a stationary probability vector ofB and thus ofT , i.e.,

Tw = w, 〈w, e〉 = 1,(51)

whereeT = (1, · · · , 1). For everyε > 0 there exists a matrixVε and a vectorb ∈ Rn
+ ,

which depends onw and ε, such that

Tw = Vew + 〈w, e〉b(52)

and

r(Vε) = ε .(53)

Moreover, (51) holds if and only ifw − Vεw = b .

Proof. Consider for eachj = 1, · · · , r, the decomposition of the diagonal blocks of
B in (48) into their eigenprojections, i.e.,Fj = Pj + Zj , 1≤ j ≤ r, whereP 2

j = Pj ,

PjZj = ZjPj = 0, 1 /∈ σ(Zj) ⊂ {|λ| ≤ 1}. Then for anyt, F̂ t
j = [ 1

2(I + Fj)]t =
[ 1

2(I + Pj +Zj)]t = [Pj + 1
2(I +Zj)(I − Pj)]t and therefore

F̂ t
j = Pj +

[
1
2

(I +Zj)

]t
(I − Pj), 1≤ j ≤ r.(54)
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For eachj = 1, · · · , r, let x̂j ∈ Rnj
+ be the unique stationary probability vector of the

irreducible matrixFj , i.e.,

Fj x̂j = x̂j = Pj x̂j , 〈x̂j , ej〉 = 1,(55)

whereej ∈ Rnj , eT
j = (1, · · · , 1).

Since for everyx ∈ Rnj
+

lim
t→∞

F̂ t
jx

〈x, ej〉 =
1

〈x, ej〉Pjx,

and the rate of convergence is independent ofx, we can find a positive integerpj
such that fort ≥ pj

F̂ t
jx ≥ (1− ε)Pjx, j = 1, ..., r.(56)

By hypothesis,r(F0) < 1 and thus, there is a positive integerp0 such that

r(F̂ p0
0 ) < ε.(57)

Let

t̂ = max{pj , j = 0, 1, · · · , r}(58)

and defineUj = F̂ t̂
j − (1− ε)Pj ; see (54). Thus,

Uj = εPj +

[
1
2

(I +Zj)

]t̂
(I − Pj).(59)

We provide now the core matrix

Vε = E


[
(1/2)(I + F0)

]t̂
0 . . . 0

Ĝ1 U1 . . . 0
. . . . . .

Ĝr 0 . . . Ur

ET,(60)

whereĜj are the blocks in (50). It follows from (56) thatr(Uj) = ε, 1≤ j ≤ r. Thus,
from (57) and (58) we have that

r(Vε) = max[r(F̂ t̂
0), ε] = ε(61)

which is the desired condition (53).
We provide now the vectorb = b(w, ε). Let w ∈ R

n
+ be any stationary probability

vector of B. It is easy to show that the permuted vector ˆw = ETw is a convex
combination of the vectors ¯xj defined as ¯xT

j = (0, · · · , x̂j , · · · , 0), 1≤ j ≤ r, where
x̂j ∈ Rnj

+ are as defined in (55). In other words, there exist numbersµj ,

0≤ µj ≤ 1 , j = 1, · · · , r,
r∑
j=1

µj = 1,

such that
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w =
r∑
j=1

µj x̄j ,

i.e.,ŵT = (0, µ1x̂1, · · · , µrx̂r); cf. (49). We defineb = Ec, wherecT =
(
0, cT

1 , · · · , cT
r

)
,

andcj = µj(1− ε)x̂j , j = 1, · · · , r. The identity (52) follows.
Using the identities (51) in (52) one obtainsw− Vεw = b, and conversely. The proof
is complete. ut

We note that during the proof of Lemma 5.1, we have provided, for anyε > 0,
the decompositionT = Vε + (1− ε)EPET, whereVε is given in (60) and

P =

 0 0 . . . 0
0 P1 . . . 0
. . . . . .
0 0 . . . Pr

 .
Let us now check that all the requirements of Theorem 3.7 are fulfilled. We

chooseR andS(x) as in Example 2.1. We have already shown that (5), (6), and (25)
hold for all x ∈ D = {x ∈ R

n
+ : Rx > 0} ⊂ IntRm

+ . SinceW = E = R
n, the

operator-functionS(x) is W -continuous onD . The existence of a convergent core
V is guaranteed by the previous lemma withV = Vε. The convergence properties of
P (x)V and J̄(x) can be shown as in [22]. Thus, all hypotheses of Theorem 3.7 are
fulfilled and we have the following result.

Theorem 5.2. LetB be an irreducible stochastic matrix. Then Algorithm 3.3 is locally
convergent to the unique stationary probability vector ofB, and its rate of convergence
is given by the estimate‖x̂− x(k)‖ ≤ κk‖x̂− x(0)‖, whereκ ≤ √

ε.

It is worth mentioning that the rate of convergence can be made arbitrarily fast.
For a general stochastic (reducible) matrixB, partitioned as in (48), Algorithm

3.3 can be appropriately adapted to obtain the same result as in Theorem 5.2. The
aggregation mapR is constructed as a direct sum of aggregation mapsRj : Rnj →
R
mj , j = 1, · · · , r, for some appropriate numbersmj , with

r∑
j=1

mj ≤ m, i.e.,

R = 0⊕R1 ⊕R2 ⊕ ...⊕Rr,

where 0 denotes the zero-map. This means that the matrix (7) has a diagonal block
structure. Similarly, the disaggregation operatorsS = S(u) is defined as

S = 0⊕ S1(u1) ⊕ ...⊕ Sr(ur),

whereuT = (0, uT
1 , ..., u

T
r ). Moreover, by a proper choice ofRj , j = 1, · · · , r, one

can obtain all extreme stationary probability vectorsB. It follows that in this case,
Algorithm 3.3 can be easily implemented for parallel computations.

The construction of a convergent coreV of the operator under considerationB is
based on the primitivity concept of the irreducible components of the associated matrix
T . Lemma 5.1 shows that there is always possible to reach a very fast convergence,
i.e., when the appropriate powert̂ is used in (50). This is of course a theoretical result,
in practice, this may be in some cases rather costly. This happens if the transient block
F0 is large and has its spectral radius close to 1, and if the number of ergodic blocks
is small and the blocks are sparse. In either of these two cases,t̂ is large. The same
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argument implies that, in light of (61) and (58), if the transient partF0 is absent in the
representation (48) ofB, and the diagonal blocks in (48), i.e., the ergodic blocks, are
essentially smaller than the size ofB itself, then the core operator is obtained with
few computations and thus fast rate of convergence is easily and cheaply achievable.

Thus, our Lemma 5.1 offers a possible explanation why the aggregation/disaggre-
gation algorithms converge fast in the nearly decomposable case as observed in prac-
tical computations and as shown by Cao and Stewart [2]. In addition, the lemma
suggests that fast convergence can be achieved in other situations, namely, when the
diagonal blocks are small in size, and the off-diagonal blocks are sparse with ele-
ments which need not to be small, i.e., in the case of stochastic matrices representing
Markov chains with many states small in size, but not necessarily uncoupled.

The following lemma offers another less expensive way how to guarantee a con-
vergent coreV for general stochastic matrixB.

Lemma 5.3. Let the exponent̂t in (50) be such that at least one column ofF̂ t̂
j (not

necessarily all of them) is strictly positive,j = 1, · · · , r. Let cT
j = (γj1 . · · · , γjnj

) with

γjk = min{f̂ jkl : l = 1, · · · , nj}, and letbT =
(
0, cT

1 , · · · , cT
r

)
ET andV = T − 〈., e〉b,

eT = (1, · · · , 1). Thenr(V ) < 1, b ≥ 0, and

Bw = Tw = w, 〈w, e〉 = 1,

holds if and only ifw − V w = b.

In view of (48) there are actuallyr noted stationary probability vectors and namely
those uniquely determined by the irreducible blocksFj , j = 1, · · · , r. These stationary
probability vectors are calledextremal. A systematic way to compute all the extremal
stationary probability vectors, say by iterative or semiiterative methods, consists just
of computing successiven (in general) iteration sequences with the standard basis
elements as starting vectors respectively; see Marek and Szyld [28], Tanabe [39].
In conjunction with applying aggregation/disaggregation algorithms an efficient way
to determine the block structure ofB as shown in (48) is needed. To this purpose
Tarjan’s algorithm as implemented by Duff and Reid [7] is recommended.

In the rest of the section we present some numerical experiments which illustrate
the convergence of the iterative aggregation method for stochastic matrices. Consider
the 8× 8 stochastic matrix given in Courtois [6, Appendix 3]. There, an aggregation
to R

3 is suggested, whereG1 = {1, 2, 3}, G2 = {4, 5}, andG3 = {6, 7, 8}. The
largest eigenvalue of the stochastic matrix which is less than one has value .9998 and
thus the power method is extremely slow. Similarly, for the Gauss-Seidel iteration
operator, the largest eigenvalue less than one has value .99878. In contrast, the iterative
aggregation method with the aggregation just mentioned and inner residual tolerance
of 10−5 converged to the stationary probability distribution to within 10−4 in 14 outer
iterations, using a total of 34 inner iterations.

The sample matrix is nearly decomposable, and has about three zero elements in
each row. In order to test the iterative aggregation method in more general stochastic
matrices, we increased the value of each off-diagonal entry by a fixed numberα, and
subtracted from the diagonal entry the corresponding amount, so the matrix remains
stochastic. In Table 1 we report the number of outer and inner iterations for different
values ofα. In all cases, the inner iterations were stopped when the change from the
previous iterate was below 10−5. The method was stopped when the current iterate
did not change by more than 10−4.
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Table 1. Iterative aggregation method for stochastic matrices

α outer iter. total inner iter.
0.0 14 34
3.16× 10−7 14 34
1.0× 10−6 14 34
3.16× 10−6 14 34
1.0× 10−5 15 34
3.16× 10−5 15 35
1.0× 10−4 15 36
3.16× 10−4 15 34
1.0× 10−3 15 29
3.16× 10−3 15 23

6. Conclusion

We have provided a proof of convergence for an iterative aggregation method for
general stochastic matrices, not necessaryly nearly decomposable matrices. Our proofs
are more general than that, they applied to Markov processes in general Banach spaces.
The proofs are based on the idea of associating to the Markov operator a core operator
which is zero-convergent, and studying the convergence of the iterative aggregation
method for the new associated system.
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