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Summary. The iterative aggregation method for the solution of linear systems is
extended in several directions: to operators on Banach spaces; to the method with
inexact correction, i.e., to methods where the (inner) linear system is in turn solved
iteratively; and to the problem of finding stationary distributions of Markov operators.
Local convergence is shown in all cases. Convergence results apply to the particular
case of stochastic matrices. Moreover, an argument is given which suggests why the
iterative aggregation method works so well for nearly uncoupled Markov chains, as
well as for Markov chains with other zero-nonzero structures.
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1. Introduction and notation

Iterative aggregation refers to a class of methods, sometimes called aggregation/dis-
aggregation, which has been an effective tool for the solution of linear systems and
certain eigenvalue problems; see Cao and Stewart [2], Chatelin and Miranker [4],
[5], Haviv [15], Mandel and Sekerka [22], Miranker and Pan [30], and the references
given therein.

Briefly, the general idea is that at each step of these methods, the linear system is
replaced with a system in another (smaller) spacdaggregation step), this (smaller)
linear system is solved and its solution is used to improve the current iterate in the
original space (disaggregation step), often the improved iterate is used to begin one or
more relaxation steps; see Sect. 2 for a detailed description of the method we study.
Of course, the iterative aggregation method is related to the principle of the multigrid
method, but no underlying mesh or even a discretization of a differential equation is
assumed; see e.g. Mandel [21

The idea of aggregation appeared naturally in input-output economic models,
where goods and services are aggregated (grouped together) according to certain

* This work was supported by National Science Foundation grants INT-9196077, DMS-8807338 and
DMS-9201728



62 I. Marek and D.B. Szyld

economic criteria; see the survey by Vakhutinsky, Dudkin and Ryvkin [41] and the
extensive bibliography there. The iterative aggregation method was extended to other
linear systems and to the problem of finding the stationary distribution of Markov
chains; see the mentioned references and also Mandel [20], and Marek [24]. As
mentioned, there are several versions of these methods; see the surveys by Schweitzer
[33], [34], and the recent paper by Kafeety, Meyer and Stewart [16]. The method we
choose to study is the extension of the method found in Mandel and Sekerka [22].
This method is not expensive, since no solution of linear systems at the disaggregated
level are performed; only solution of systems in the (smaller) aggregated spaces are
computed.

Global convergence of the iterative aggregation method for Markov chains was
shown only for the nearly uncoupled case for the special method studied by Cao and
Stewart [2]; see also Stewart, Stewart and McAllister [35]. Local convergence for
linear systems was first proved by Mandel and Sekerka [22].

In this paper the local convergence proofs in [22] are extended in several direc-
tions. First, in Sect. 2, the iterative aggregation method is described for linear systems
on Banach spaces, examples given, and local convergence shown. Further, in Sect. 3,
local convergence is shown for the method applied to Markov operators. In our anal-
ysis of the method for Markov operators, we do not restrict ourselves to the nearly
decomposable case, as is done e.g. in [2]. Our convergence proof applies to the gen-
eral case. In Sect.5 we relate our proof to the nearly decomposable case, as well as
to other cases.

In practice, often the linear system in the (smaller) spaceés not solved exactly.
Instead, it is in turn solved iteratively, for example, using any of the methods in the
package MARCA [36], or the one suggested by Freund and Hochbruck [9]. This
situation is similar to inner/outer iterations or two-stage methods, see e.g. [10], [11
[14], [19] or [38]. We call the resulting metholderative Aggregation with Inexact
Correction In Sect. 4, we show local convergence for the inexact method and extend
the result to Markov operators. Some preliminary results related to this paper can
be found in Marek [2band in Marek and Szyld [27]; see also Szyld [37]. We
believe that this is the first time local convergence proofs for (exact or inexact)
iterative aggregation methods applied to general Markov chains — not necessarily
nearly decomposable — and Markov operators is given.

In Sect.5 a new mathematical tool is presented whereby we can apply our theory
to stochastic matrices and finite Markov chains. In particular we obtain a better un-
derstanding on why the iterative aggregation method works so well when applied to
Markov chains. Numerical examples are also given.

Let & and.”7 be Banach spaces over the field of real numbers (@"gand
R™, m < n). Let &’ and.”7’ denote the dual space éf and.”7, respectively,
and .2 (% ,.7) the Banach space of bounded linear operatorgofnto .7 ; we
let . 2(&) =.28(#4,&). When& =R", . Z(&) is the space ofi x n matrices. If
T € .2(&,.7) thenT’ denotes the dual df’, i.e., 7' € .2(7',&"). We further
assume that and.7 are generated by closed normal con&sand.7Z respectively;
see e.g. Krasnosel'skii [16r Krein and Rutman [18]. This assumption is satisfied by
R™ by letting. 72" = RY, the set of nonnegative vectors. An operatbe .72(&) is
called.7Z"-nonnegative if A7 C .72 and denotedd > 0. When the identification
of the coneZZ is clear from the context &2 -nonnegative operator is simply called
nonnegative. ForzZ = R}, the nonnegative operators are the nonnegative matrices;
seeeg. [l Let ' = {2’ € &' : (z,2') = 2/(x) > 0 forallz € Z}. It can
be shown that7” is also a closed normal cone generatifig [18]. An element
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x' € F" is called strictly positive if(x,z’) > 0 wheneverz € .72, z # 0. When
& =1R"™, a strictly positive vector is just a vector with positive entries.

A suitable replacement to a topological interior of a cone .G#t) is the concept
of d-interior: . 7% = {x € .7 : (x,2') > 0Va' € . 7" 2’ # 0}. An example of
a cone.7Z having Int.72 = () while .79 # () is the cone¥%?(0, 1), consisting of
all elementsr € & = =Z2(O, 1) having a representative > 0 almost everywhere in
(0,1). If & =R, thenZ9 = Int 7 ={x :2; >0,i=1---,n}. By z > 0 we
denotez € .77 and call it a nonnegative element, andby 0 we denoter € .77,
We writex > y if z —y > 0.

An elementz € .77 is called extremal ift = ay + 8z, y € ', 2 € FZ y Z 0,

z #Z 0, implies that eitherr = 0, 5 = 0, or z = vy for some~y # 0. The set of extremal
elements of 7" is denoted by Ext7". y

By # we denote the complex extension &f, i.e., & = & @ i# with the norm
defined by/||z||,; = SUR<p<o, ||z COSE + ySind||x wherez = z +iy, z,y € &. An
operatorA € .Z(#) can similarly be extended td € .2(¥) by setting Az =
Az +iAy, wherez = z +iy. Let A € .2(#), and lety be a complex scalar. Let
R(u1, A) = (u — A)~! be the resolvent operator. The complement of the resolvent set
{peC:(ul—-A)~1e.2(¥)}is called the spectrum oft and denotedr(A) [40,
p.264]. We letr(A) = max{|u| : p € o(A)} and call it the spectral radius of.

A nonnegative operatoB hasr(B) > 0, and there exists an eigenvectoe> 0,
called the Frobenius eigenvector, such tBat = r(B)z; see e.g. [17], [42].

We say that the operatet hasProperty Pif every a € o(A) such thaja| = 7(A)
is a pole of the resolvent operat&(u:, A). We will assume throughout the paper that
the operators studied hawrroperty P It is well known that if« is a pole of the
resolvent operator

oo q(a)
(1) (I — A7t =Y " Ap(a)(p— @) + > Br(@)(u —a) ",
k=0 k=1

where 4, (a) and Bys1(), k = 0,1,--- belong t0.22(¥), and ¢(a) < +cc is the
multiplicity of « as a pole of the resolvent operator [40his multiplicity ¢ is called
the index of A with respect tax and is denoted by ind4. Thus, ind, A > 1.

2. Iterative aggregation

In this section we consider the solution of the linear system
2 Ax =0,

wherez € &, A € .2(&), andb > 0. For the solution of (2), it is customary to
consider a splittingd = M — N with M1 > 0,

(3) T=M"N>0,

andr(T) < 1, in which case linT’* = 0. Given an initial guess®, one can consider

. . k— o0
an iteration process
4) g®*D = k) 4 ¢
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wherec = M 1. It is well known that the process (4) converges linearly to the
solution of (2) with asymptotic convergence factor¢f’); see e.g. Varga [42]. Thus,
the system (2) is equivalent to— Tx = M b and, without loss of generality, we
consider operators of the ford = I — B, B > 0, wherel denotes the identity
operator in& .

We discuss now the aggregation and disaggregation maps. Let us consider a
nonempty setZ C ¢&. Let the aggregation ma® € .2(¢,.7) be such that
R7Z C .7, i.e., R maps nonnegative elements #i into nonnegative elements
in .7, and for allz € &, let the disaggregation map, which depends 29n
S(z) € . Z(7,#) be such thatS(z).77 C .77, i.e., S(x) maps nonnegative ele-
ments in.7 into nonnegative elements #i. Let P(x) = S(z)R and Iz the identity
operator in7 . We assume that for everny e &7 the following two relations hold

5) RS(z) =17,
(6) P(x)x = S(x)Rx = x.

It follows from (5) that [P(x)]? = P(x), i.e., thatP(x) is a projection or¥s . Relations

(5) and (6) are quite natural and, as we will point out in the next section, they
guarantee that in the case of Markov chains the aggregated matrix is also stochastic.
Before describing the iterative aggregation method we present several examples of
aggregation and disaggregation maps.

Example 2.1Let & = R", .7 = R™, 1 < m < n and partition the index set
into m nonempty and disjoint set&l, ---,n} = Gy U--- U G,,. Definez = Rx as
2 =Y ieq, iy and [S(2)z]; = 2w /(e g, o) if j € G and zero otherwise. Here
& ={x € & :x>0,Rx > 0}. Thus,R is anm x n matrix whose columns have a
single nonzero entry and this entry is a one, e.g. of the form

1000010
7) R=|0101001
0010100

Similarly, S(z) is an x m nonnegative matrix with a single nonzero per row. It is
easy to see that these maps satisfy (5) and (6). This basic example is Method (a) in
Haviv [15] and also appears in other references, e.g. ChatdlirSghweitzer [33].

Example 2.2.Let & = (1, .7 =R". LetN = {1,2,---} be the natural numbers and
letg: N — {1,---,n} be given. LetG; = {j € N : g(j) = i}. Definez = Rx as
Zi = Y ieq, i and [S(2)2]; = 225 /(O e, xe) if j € Gi and zero otherwise. Let
G={relt: z;>0,jeN}. HereZ ={z e fi:) g o >0i=1--- n}

Example 2.3.Let & = Q[0, 1], whereQ]O0, 1] is the space of piecewise continuous
functions on [01], i.e., of functionsz : [0,1] — IR such that there exists a finite
number of points 0 =y < #; < --- < tx = 1 such that the restriction|;;, ,

is continuous and bounded oty (1,¢;), j = 1,---, k = k(z), with the norm||z|| =
max{|xz(t)|,t € [0,1]}. Let.#7 = R", and we selech + 1 distinct points 0 =5y <

51 < -+ < s, = 1. Definez = Rz, z; = f:l 1:c(s)als, i=1---,n, and S(x)w = v,
v(s) = [1/(Rx);Jw;x(s) if s;-1 < s < s;. HereZ ={zx € & :x >0, Rx > 0}.
We note that in the integral defining, any positive Radon measure on 1) can be
used.



Local convergence of the iterative aggregation method 65

Example 2.4.Let 2 = [a,b] x [c,d] C R2. Let & = £2(02), and.7 = £?([a,b)).
Define Ru)(s) = fcd u(s, t)dt, and S(u)z = [1/(Ru)(s)]z(t)u(s,t). HereZ = {u €
& iu>0, fcd u(s,t)dt > 0}. In this example, leB € .2 (¢) be defined by a kernel
a(s,t,s',t'),i.e, Bu= [,als,t, s t)u(s t')ds'dt', and we have thaB.~2 c Q[],
where Q[ 2] is the space of piecewise continuous functionsfenWe note that(?
need not be a rectangle, we can consiler 2; x (2, £2; C R, i =1,2, and that we
can also considef; C B?, 2, C R, £2 C &%, namely a “cylinder”.

Let B#(x) = RBS(x) be the aggregated operator and assume further that
B7(x) > 0, i.e., thatB-(x).74 C .74, and thatr(B7(x)) < 1 for all z € &.
We define the following

Algorithm 2.5 (Iterative Aggregation). Given a nonnegative operatdt, b > 0, an
initial guessz(©, and a convergence parameter 0, letk = 0.

1. Solve the (aggregated) equation
(8) z — B7(x)z = Rb.

with z = 2*) and call the solution:®).

2. Disaggregate and iterate according to the formtifa® = BS(z*))2(F) +p.

3. Test if [|**D — 2®)|| < ¢ (or other convergence test). If yes, STOP; otherwise
k:=k+1andgotol.

In the case of (3), the operator in (8) B&-(x) = RMINS(z). If & = R",
7 =R™, 1< m <n, T7(x) can be computed witln solutions of a linear system
with coefficient matrix)M. These solutions can be efficiently computed, depending on
the choice ofM, and this has to be taken into account when evaluating the suitability
of the method.

In order to analyze the convergence of the iterative aggregation method, we can
express each iteration in terms of the elements of the original spaas

(9) 5D = BU (™) + b,
where
(10) U(x) = S@)[17 — B7(x)] 'Rb.

Let 2* be the solution of (2). Thus(I — B)x* = Rb, and using the relations (5) and
(6), it follows that
(11) U(z*) = z*.

Itis immediate that the method is consistent, i.e., ifat BU (x*)+b. In the following
theorem, the local convergence properties of the iterative aggregation method are
shown. The proof resembles that of Marek Jj2¢f. also Mandel and Sekerka [R2

In the proof here, and in the other convergence theorems in the paper, we use the
fact that the spectral radius of the Jacobian of the map is less than unity in a whole
neighborhood around the solution.

Theorem 2.6.LetR € . 2(&,. 7)), R7Z C . F. LetZ/" C & be a subspace such
that ||z|| < ||z|lo, for all z € Z7". Let & be a nonemptyZ -open set such that
eI, Skx) e . B(F,&), S(x)F C .7, S(x)is Z-continuous, for alke € &7,
and (5) and (6) hold for al € &. Letr(B) < Landr(B#(x)) < 1forall z € &.
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Moreover, letU defined in (10) be such thd&U(z) + b € & wheneven: € &. Let
there be a positive numbet such thatr(J(x*)) < 8 < 1, where

(12) J(x) = J(B,z) = B[I — P(x)B]Y[I — P(z)].

Then, the iterative aggregation method, i.e., the iteration process (9 idocally
convergent, i.e., there exists& "-open neighborhood# of x* such that

(13) Jlim |2® — 2*|| =0 for anyz© e 2¢.

The speed of convergence is characterized by the estimates
(14) 2™ = z*[| < 2™ — 2% 5 < rp"
wherep = r(J(z*)) +n < 1, for somen > 0 and x independent of.

Proof. The conditionr(Bs(x)) < 1, together with (5) and (6) imply the following
relations

(15) [I7 — B@)] " =) [RBS@)]*=R) [P@)B)]*S(x),
k=0 k=0
(16) S@)Lr — B7(x)] 'R =[I — P(z)B] *P(x),

[I — P(x)B] t=1+[I — P(z)B]"*P(z)B,
B{I —[I — P(z)B] *P(z)(I — B)}
B{I - 5(x)[L7 — RBS(z)] *R(I — B)}.

J(x)

(17)

It follows from the last equation, (5) and (6) that
(18) J(z)z = 0.
We replaceb = (I — B)z* in (10) and use (11), (17) and (18) to write
BU(z) — BU(z*) = BS(z)[l> — RBS(z)] *R(I — B)z* — Bz* = —J(x)z*
(19) = J(@)(x — 2).

Let ¢ > O be arbitrary. It is well known that there is a notfrj|. equivalent to the
norm ||| such that

(20) [J@)e < r(J@))+(;
see, e.g., [29p.55]. TheZZ -continuity of S(z) implies the 7 -continuity of J(x).

Thus, for a givere > 0 there is a > 0 such that|J(z) — J(z*)|c < € as soon as
|z — z*||¢ < 6. According to (19) and (20) this implies that

(21) [BU(z) — BU(z")[l¢c < [r(J(@"))+e+(] |lz —2"[¢ -
Thus the mapBU(z) is contractive in a neighborhood/ of z*. Since all iterates

z%) € & ¢ 777, the iterative process (9) i#"-convergent. The equivalence of the
norms||.|| 7 and|.||; together with (21) imply the desired result (14). O
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We point out that in Algorithm 2.5, step 2, more than one relaxation step can be
taken, and the convergence proof can be carried out in an analogous way.

Mandel and Sekerka [22] showed that for the Example 2.1, the hypothesis
r(J(z*)) < 8 < 1 holds. The same arguments can be used to extend the result to
Example 2.2. In what follows we show the same for Example 2.4. In this case we have
&' = andB'u = [,a(s,t, s, t')u(s,t) ds dt. We assume that there ig T4
(the d-interior of the coneZZ’) and 0< « < 1 such that

(22) B'ug < aup.

It follows thatr(B) < o < 1; see e.g. [26]. Let us assume first thate .779. We
defineD € .2(#) as Df)(s,t) = \/uo(s,t)/x*(s,t)f(s,t). Let v = Da* = D™ tuy,

G = DJ(x*)D~Y, E = DBD™!, andQ = DP(x*)D~. Of course,Q? = Q. We
show now that@Q’ = @ which implies that it is an orthogonal projection. To that
end, first note that sinc&(z*)z* = z*, we have thatP(z*)D~2 = D~2. Given
x,y € & arbitrary, lety) = Dx, n = Dy. Then(Qz,y) = (DP(z*)D ™%y, D™1n) =
(D~Y, D7) = (x, Qy). We introduce the normiT||, = inf{A > 0 : \v —Twv €
72'}. It follows from (22) that

E'v=D"'B'DD Yuy < aD tug = av

and thus||E’||, < «. Sinceb > 0, andBx* +b = z*, we have thatBz* < z* and
thus Ev < v which implies that| E||, < 1. Therefore

1E|? < r(E'E) < |[E'Ello < | E'[ | E]ls < e

The fact that-(J(z*)) = 7(G) < | E|| < o/? < 1 is a consequence of the following
lemma, whose proof can be found in Mandel and Sekerkj [22

Lemma 2.7. Let @ € .2(¢) be an orthogonal projection. Let € .72(#) such that
|E|| <1, andG = E(I — QE)~Y(I — Q). Thenr(G) < || E||.

Using the continuity of/, the case where* ¢ . 729, 2* € .7/, can be treated as a
limiting case.

3. Iterative aggregation for Markov operators

We say that an operatd® € .2(¢), B > 0 is a Markov operator corresponding to
z' e FZ" strictly positive if for allz € .7 the following equality holds

(23) (Bz,3') = (z, ).

Proposition 3.1. Let B be a Markov operator corresponding 8. Let 1 be a pole of
the resolvent operator, ther(B) = 1 andind; B = 1.

Proof. Since B is a Markov operator corresponding to the strictly positive element
z' e .72, it follows that (u,z') > 0 for all uw € .77, u # 0 and(Bx,&') = (x, &),
forall x € .72. Let 9 Z 0, 29 € .72 be the Frobenius eigenvector B8f Then,

0 < r(B){xo, ') = (Bxo,2’) = (w0, 2),
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thusr(B) = 1.
Let ¢ > 1 be the multiplicity of the pole of the resolvent operator. Then there exists
y €.7,y#0, such that &< (I — B)? 'y #0; see e.g. Marek [23]. Then

0<((I-B) Y, 2 =(I—-B)Y %, — B'%)=0.

The contradiction implieg=1. O

We note that the essential condition in Proposition 3.1 is that there exigt8,
u € .7, such thatBu < au, for somea > 0, and somery € . 77", xy = By, such
that (u, z) > 0. Sufficient conditions for this to hold are (i) thate .79, or (ii)
that z;, be strictly positive.

When & = R®, .7 = R7, &' is usually taken as the vecter= (1,1,---,1)T
and the Markov operator correspondingetés usually a transition matrix of a finite
Markov chain. In this case, the condition (23) is sim@ye = ¢, i.e., the matrixB
is column stochastic.

In this section we consider a Markov operatBrcorresponding tor’"and the
problem of finding a stationary distribution &, i.e., we wish to solve

(24) Br =u, (z,7') = 1.

The second equation in (24) can be seen as the normalizatiorcofresponding to
Z’. In the case of finite Markov chains, i.e., in Example 2.1, withr 2, the element
x represents probabilities ang,e) = >°7_; x; = 1. Similarly, in infinite Markov
chains (Example 2.2}z, é) = Z;ﬁl xz; =1, wheree; =1,;=12,---

Before describing the iterative aggregation method for Markov operators we need
to understand what is the appropriate aggregated problem to solve in the (smaller)
spaceZ . The following lemma states that given a Markov operator with respect to
Z', under certain conditions, one can choose an elememt the dual space of the
(smaller) space7 in such a way that the aggregated operator is a Markov operator
with respect tar”. The condition required is that

(25) (P(u)a, &) = (z, '),

for all u € & and for allz € .72".

We first show that for finite and infinite Markov chains (Examples 2.1 and 2.2),
condition (25) holds. From the definitions of the aggregation and disaggregation maps
it follows that

[S()Ral; = 2eca ™ it e,
Dorea, U
thustEGi[S(u)Rx]j =2 req, Te, and therefore
(S(u)Rw,e) = [S@)Ra]; => Y [S)Rx]; =Y x; = (z,¢),
J =1 jeG; J

where the)_ . is from 1 ton in Example 2.1 and from 1 too in Example 2.2 (and
e should be interpreted asiri the latter case).
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Lemma 3.2.LetZ C &. LetR € . B(#,.7), R7Z4 C FH, S(x) € . B(F,&),
S(x).7% c .7, forall x € &, and (5) and (6) hold for alk € &7. Assume further that
(25) holds for allu € & and allz € .7Z". Let B be a Markov operator corresponding
to Z’. Then there exist®’ = 7'(u) € .7’ strictly positive on7 such thatB-(u) =
RBS(u) is a Markov operator corresponding t&. Thus there exists a stationary
distributionw € .77, i.e., RBS(u)® =, and (0, &) = (S(u)w,z’) = 1.

Proof. Fix u € &. Let & = S(u)'Z’. Then for anyw # 0, w € ., (w,&’) =
(S(w)w, 2’y > 0. Using the Markov property oB and (25) we have that for all
weE.F

(S, ) = (S(w)w, B'%') = (P(w)BS(u)w, &')

(RBS(u)w, S(u)'%') = (B7(u)w, ¥'). O

We note that ifx” = S(u)'Z’, then it follows from (25) that?’'z’ = z'.

In the case of a finite Markov chain, given a vectgrLemma 3.2 says that the
aggregated matri®RBS(u) is a Markov operator with respect to="5S(u)"e. But

&=1Sw)el;= > ue/Y u=1 if jeG

LeG; LeqG;

(w, ¥')

In other words, if B is column stochastic ifR", the aggregated matriR B.S(u) is

column stochastic iR™, for all w € &7. This is in contrast to some aggregation or
disaggregation maps other than the ones defined in Example 2.1, where the aggregated
matrix is not necessarily column stochastic; see e.qg. [6], [16], [33], [34].

Let w be the solution of (24). One can find this stationary distribution by solving
the problem with another operat@t, 7' > 0, T' a Markov operator havingy as a
stationary distribution. For example, this is the cas@ ifs a polynomial inB with
nonnegative coefficients. Also, if such operdlois given, any power of" plays the
same role. In this case, the aggregated problem is

(26) Tz ()2 = z, (2,8) =1,

where T (x) = RTS(x), cf. (8). In light of Lemma 3.2, (26) has a solution for
7' = S(x)'z’. Thus we have the following

Algorithm 3.3 (Iterative Aggregation for Markov Operators). Given a Markov
operatorT with respect toz”, an initial guessz(®, and a convergence parameter
e>0,letk=0.

1. Solve the (aggregated) equation (26) witk z*) and call the solutiorz(®).

2. Disaggregate and iterate according to the formtifa®) = 7.5(2(*))2(®,

3. Test if ||[2#*D — z(®|| < ¢ (or other convergence test). If yes, STOP; otherwise
k:=k+1and go to 1.

Sincer(T) = 1 andr(T#(x)) = 1 we cannot write (10), and the proof of the local
convergence of the iterative aggregation method for Markov operators is more com-
plicated than that in the previous section. We associate Wifbr B) an operatoi/,

which we callcore operator, satisfying” > 0 andr(V) < 1, and elements?) € .7,

j=1--- k such that for some power, we have the following decomposition
k 4 k
(27) TPzx=Ve+y (z,@8)0, e, & =Y &
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This is a theoretical development and even though this construction may be pos-
sible in practice, it is not used in Algorithm 3. The elemebis € .7 have to be
small enough so thdt’ > 0. Pobk [32] showed that for Example 2.1 affd= B one
can choose = 1 andk = 1 by choosingy = b such thath; = min;(Be;);, where
e; =(0,---,1,---.0)". If we.Z is a stationary distribution df’, i.e. if

(28) Tw=w, (w,7') =1,

then it follows from (27), that giverV/, the elemend can be found simply by =
w — Vw; see further Lemmas 5.1 and 5.3.

The decomposition (27) allows us to work with the core operdtowhose powers
converge to zero and leave aside the other paff ¢br 77), which is essentially a
finite rank update. Additionally, for some cases we can explicitly find .2(7 , &)
such that

(29) T=V+CRI-YV).

For example, in the rank-one case, following &0[32], we can define
_ l ~/

(30) Cz= (b, ) (z,@")b.

The vectorb plays the role of the right hand side corresponding to a solution of a
linear system of the form
(31) -V)w=b

and the theory developed in Sect. 2 can be tacitly applied. In Sect. 5 we show explicitly
the decomposition (27) for stochastic matrices, i.e. for Example 2.1. The ndatrix
for stochastic matrices can be defined also as in (30); cf. Lemma 5.3.

We will see later that the analogous operatorJi@) in (12) corresponding to
Algorithm 3.3 is _
(32) J(z) = T[I — P(z)V] I — P(z)].

In the following lemma, we show that the operaiiin (32) can be replaced by the
associated core operatbr. We note that from the identities (15)—(17) it follows that
the conditionr(P(z)V) < 1 is equivalent to the natural conditioRV S(z)) < 1.

Lemma 3.4.LetV € . 2(#),V >0,r(V) < L Let¥ C &.LetR € .2(&£,.7),
RZ C FH,S(x) € B(7,&%), S(x)7# c .7, forall x € &, and (5) and (6) hold
for all x € &. Assume further that(P(z)V) < 1for all z € &, and that there exists
C €.2(7, #) such that (29) holds. Then

(33) J(z) = V[I — P(z)V] I — P(z)].
Proof. It follows from (29) that

VI — P(@)V] I — P(x)]

=[T — CR(I — V][I — P(x)V]YI — P(z)].
However, since by (5R[I — P(x)] = 0 we have that
R(I — V)[I — P(z)V] Y — P(z)]
= R[I — P(z)V + P(z)V — V][I — P()V]'[I — P()]
= R[I — P(z)] = 0,

and the proof is complete. O
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By comparing (33) with (12) we see thdi(x) = J(V, z), that is, the Jacobian
corresponding td@” (or B) with »(T") = 1 is the same as that of the iterative aggregation
for (31) with »(V) < 1.

In the following lemma, we establish a relation between the disaggregated iterate
and the elemend, cf. (9) and (10). The element® corresponds to the last iterate
andw™ to the new one.

Lemma 3.5. LetV € . 2(#),V >0, r(V) <l LetZ C &. LetR € .2 (&,.7),
RIS C H, S(x) € B(F,&), S(x)7# C Tz, for all z € &, and (5), (6) and
r(P(x)V) < 1 hold for all x € &. Let B be a Markov operator corresponding fo.
Letw € .7 satisfy (24), i.e. letv be a stationary distribution aB, and leth = w—V w.
Assume that iIRBS(u)® = @, © € .7, (S(u)w,z) =1, for all u € &, i.e., assume
that if @ is a stationary distribution of the aggregated operator, cf. Lemma 3.2, then

(34) W — RV S(u)w = Rb.
Then for anyw® € & andw” defined asv™ = T'S(w°)w, the following identity holds
w" = T[I — P(w®)V]~ 1P (w°)b.

Proof. We write «f = [I — RV S(w°®)]"*Rb and by using (16) with the appropriate
operators, the lemma follows. O

The next lemma sets the stage for the local convergence proof of Algorithm 3.3.

Lemma 3.6. Let the hypotheses of Lemma 3.5 hold. Assume furtheflttvat w for
somel € .2(&), T >0, r(T) =1 Then

(35) w=T[I — P(x)V] " P(x)b+ T[I — P(x)V] I — P(z)]w,
and
w" —w =T[I — P(w®)V] I — P(w®)])(w® — w).
Proof. We have that
w = Tw=T[I - P)V] Hw - P)Vuw]
= T — P@)V] YP@)I — V)w+w — P(z)w]

= T — P(x)V]"H{P@)b+ [w — P(x)w]}
= T[I — P@)V] *P(x)b+T[I — P(z)V]~YI — P(x)]w,

which is the required identity (35). By Lemma 3.5, the identity (35), and the relation
(5) with x = w°,

w" —w

T[I — P(w®) V] 1Pw®)b + T[I — P(w°)V] I — P(w®)]w®
—T[I — P(w°)V] P(w°)b — T[I — P(w®)V] I — P(w°)]w
T[I — P(w)V] I — P(w”)(w® — w),

and the proof is complete. O
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Theorem 3.7.LetR € . 2(¢#4,.7), R C .F,andS(x) € B(7 ,&). Let#" C
# be a subspace such thég|| < ||z||5 for all z € Z7". Let & be a nonempty
77"-open set such that(x).7# C .72, S(z) is 7/ -continuous for allz € &, and
(5) and (6) hold for allx € &. Let B € .22(¢#) be a Markov operator with respect to
2 €. 7", with a stationary distributionu satisfying (24), such thakw € .779. Let
VeR&)V>0rV)<lLetb=w-Vw,be.7 be suchthad #b < Tz for
all x € Ext. 7", (x,%’) = 1. Assume that(P(z)V) < a < 1, for somex € R, 0 < ¢,
and thatRBS(z)w € & wheneverr € & andw = RBS(z)w € .77. Moreover,
assume + V. S(z)[I — RV S(z)] 1Rb € & whenever: € &. Let there be & € R,

0 < 8 < 1, such thatr(J(w)) < 8, whereJ(w) is defined in (32). Then, Algorithm
3.3is7/"-locally convergent, i.e., there existsZ"-open neighborhood? of w such
that

Jim_ |2®) —w| =0 for 2© ¢ 2.

The speed of convergence is characterized by the estimates
12® —w]l < 2® —wllz- < rp"*
wherep = r(J_(w)) +n < 1, for somen > 0 and x independent of.

Proof. By the way we definé, we can writeBx = Vx + (z,2')b. We see that all
hypotheses of Lemmas 3.5 and 3.6 are satisfiedferB. Let ¢ > 0 be arbitrary. It
is well known that there is a nortfi || equivalent to the nornf. ||z such that

(36) 1T@w)lle < r(T@)+¢;
see, e.g., [29, p.55]. By Lemma 3.6 we have that

l2*F —wlle < @D flat —wlle <o <
< G 1@ 2 = wlle

The Z7”-continuity of S(z) implies the 77 -continuity of J_(:r). Thus, there exists a
7/"-open neighborhood” of w such that ifz(® € 22, then

17 < r(T@)+¢ +n
with somen > 0 independent ok, and, as in Theorem 2.6, the theorem follows

The hypotheses of Theorem 3.7 usually hold in practice. In particular, in Sect.5,
this is shown for Example 2.1.

4. Inexact correction

In practice, the system (8) is often solved iteratively. A splittihg — B (z) =
F(z) — G(z) is used, wheref (z) = F(z)"'G(z) > 0 andr(H(z)) < 1; see e.g.
the different options in the package by W. Stewart][86in the paper [28] and the
references given therein. A certain number, sapf iterations is performed and (8)
is replaced by

Ra®)
forj = 0,---,s—1
(37) A9 = H@®)P + Pe®) 1 Rb

0
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Thus,
s—1

28 = H@W) Re®™ +3 ~ H(2®) P(a®) " Rb.
4=0
The iterative aggregation method with inexact correction for the solution of the linear
system (2) can then be expressed in terms of the elemerifs ax

(38) x(k+1) = BU(S)(x(k)) + b7

where )

(39) U™ (z) = S(2)[H(z)* Rz + Y H(x) F(x) " Rb];
§=0

cf. [10], [19]. From the consistency of the iterative process (37) it follows the con-
sistency of the method (38), see, e.g. Varga [42], and in particular

(40) US(z*) = z*.

We remark that the splitting’(x) — G(x) can be taken ag'(z) = I andG(x) =
B (z) and all our results apply also to this particular case.

We also point out that the number of iterations in (37) can vary from one step to
the next, i.e.s = s(k). The following local convergence result applies to this general
case as long as(k) > s, kK = 0,--- In other words, we show that if the number
of inner iterations is large enough, the overall methods converges; cf. Nichols [31].
In Lanzkron, Rose and Szyld [19], and in Frommer and Szyld [10], [11], similar
situations are studied. In those references, unlike here, conditions for convergence for
any number of inner iterations are prescribed. The splitting induced by the operator
J(x) is not necessarily regular, cf. [IL.%nd therefore such conditions do not hold
here; nevertheless see the comment before Algorithm 4.2.

Theorem 4.1. Let the hypotheses of Theorem 2.6 hold.lLet- B~ (x) = F(x)—G(x)

be a splitting, i.e..F(x)~! € .2(¥), and letH (z) = F(z)"1G(x) > 0 with

(41) r(Hx) <pu<1l forall ze€ .

Then, there is & such that ifs > 3, the iteration process (38) i7" -locally convergent,
i.e., there exists @7 -open neighborhoo# of z* such that (13) holds. The speed

of convergence is characterized by the estimates (14) where(J(z*)) +n < 1, for
somen > 0 and x independent of.

Proof. Let

s—1
(42) J®(x)=B [[ — S(z)H(x)*Ra + S(x) Y H(x) F(z) *R(I — B)] .
j=0

Note thatJ®)(z) = v(z) + A(z) is an affine operator in the sense thBt)(z)u =
~(x) + A(x)u. It follows, using (5) and (6), that

s—1
J @)z = —BS(@)H(z)'Rx+B |z — S(x) Y _ H(z) F(z) 'R(I — B)S(z)Rx
=0
(43) = —BS(x)H(x)°Rx + B[x — S(z)(I» — H(x)®*)Rx] = 0.
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We replaceb = (I — B)z* in (39) and use (40), (42) and (43) to write

s—1
BUW(x) — BUN2*) = BS(x) | H(2)*Rz +Y _ H(x)' F(x) 'R(I — B)a* — Ba*
4=0
(44) = —JO(x)z* = T (@)(x — =¥).
The hypothesis (41) implies that
(45) > H(@y =[I7 — B7(@)] ' F(x).
j=0
Comparing (42) with (17), we obtain
(46) lim_ JE) (@) = J(x).

Let ¢ and¢ be arbitrary. From (41) it follows that the rate of convergence of the partial
sums in (45), as well as of the sequeri€ér)® — 0, can be bounded independent of
x. Thus, there exists a= 5(¢) independent of: such that

| T (@) — J(z)||c < € fors >3,

where ||| is the norm equivalent to the north| - for which (20) holds. Thus,
using the same arguments as in Theorem 2.6 we have that

1BUS(z) = BUP @) ¢ < [r(J@ N +e+E+C] o — "¢
and the theorem is proved. O

In a way analogous to the one described earlier in the section, often in practice, the
aggregated Markov problem (26) is not solved exactly. Instead, an iterative method is
used, and the (inner) process is stopped after a certain number of (inner) iterations, or,
equivalently, after certain (inner) convergence criteria is satisfied. Here, we choose to
stop the number of inner iterations if the residual is small enough, this is done, e.g. in
Elman and Golub [Band Golub and Overton [13], [14]. Thus we have the following
Iterative Aggregation with Inexact Correction Algorithm for Markov Operators

Algorithm 4.2. Given a Markov operatdf with respect ta:”, an initial guess:©, in-
ner convergence parameteis> 0, k= 0,1, - - -, and a global convergence parameter
e>0,letk=0.

1. Letj =0 andz{" = Ra®.

2. Computezg’i)l = H(x(k))z§k), <S(x(k))z§]i)l, y=1
where H(z) = F(z)~'G(z) > 0, andl > — RTS(x) = F(z) — G(x).

3. Testif |2} — H@®)0) || < ep. 1f yes, letz) = 20,
otherwise, letj := j + 1 and go to 2.

4. Disaggregate and iterate according to the formuftab = 7.5 (z(*) ().

5. Test if [|**D — 2| < ¢ (or other convergence test). If yes, STOP; otherwise
k:=k+1and go to 1.
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Theorem 4.3. Let the hypotheses of Theorem 3.7 hold. In addition, let

I> — RBS(x) = F(x) — G(x) be a regular splitting, i.e.F(x)~* > 0 and G(z) > 0.
Let H(z) = F(z)~*G(x) be such that(H(z)) < 1for all x € &. Lete;, > 0 be such
that ||z — H(z®)2®|| < ¢4 implies

(47) [ < v]a® —w|c

where Ru® = >*) — RV S(2®))2*), the norm||.||; is the norm equivalent t¢).|| -

such that (36) holds, and where> 0 is such that3 + v < 1. Then, Algorithm 4.2 is

77" -locally convergent, i.e., there existsZ"-open neighborhoods of w such that
Jim |2®) —w|| =0 forz@ e 2.

The speed of convergence is characterized by the estimates

[o® — w]| < [2® = wl|5- < xp*

wherep = r(J_(w)) +n+v < 1, for somen > 0 and x independent of.

Proof. Let v® = 2(® — H(2(®)2*) Then
Fz0 — G0 = py®) = () _ RBS(m(k))z(k).
Therefore we see that?) — RV S(x*))2*) — Rb = Fv®), and also that
2®*D = BT — PE® V]~ P@E®)b + S(a®) Fo®].
It follows that
2D — = J@®)(@® — w) + B[I — Pe®V]18@®W)Fo®.
Since Ru® = Fv*), we deduce that
2% — wlle < [|T@®)lc [|2® = wl¢ + [u®]c.

Since by our hypothesis, as in Theorem 3.7(z®)||: < p(.J(z™))+¢ +n with some
n > 0 independent of, and by (47), the theorem follows. O

5. Applications to stochastic matrices

In this section we study in more detail stochastic matrices, i.e., Example 2.1. We
exhibit an associated zero convergent core matrppand illustrate the iterative ag-
gregation method with some numerical experiments.

Let & = R", .7 = R} and letB be a stochastic matrix, i.e., a Markov operator
corresponding to the vecterc ", e" = (1,---,1). Let

Fk O . . . O

48) pep| G B .. .0

G 0 ... F
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be a representation d# in which the square diagonal block$ are of ordem; with

an = n. The matricesF; are irreducible for 1< j < r, 7(Fp) < 1, andE is a
4=0

permutation matrix; see e.g. Gantmacher [12}v € RY is any stationary probability
vector of B, i.e., if Bw = w, (w,e) = 1, it follows immediately thatw"= ETw
is a stationary probability vector aET BE. Moreover, since(Fy) < 1, then, this
stationary probability vector has the form

(49) QI)T = (07 ﬁ\)la Ty 12}7’) )

wherew; € R", j =1,---,r. The firstng components ofv,"which are zero, are said
to correspond to the transient state. The other components are said to correspond to
the ergodic states.

Let F 2(I +F;), 0<j<r. Let ¢ be any positive integer such that

: E o . . .0
A al
(50) T:B(I+B)} —p| G A 0
G, o0 . . . Ef

has its diagonal block,é“t strictly positive for 1< j < r. It is well known that we
may choosée = max{t; : 1 < j <r}, where 1< ¢; < n — 2n; + 2; see e.g. Varga
[42, p.42]. It is easy to see th&@lw = w if and only if Tw = w, i.e,w e RY is a
probability stationary vector foB if and only if it is for 7. Therefore the permuted
probability stationary vector df, ETw = &% has the same form (49).

The following lemma provides the existence of a core makfiassociated with
T of the form (50), with the appropriate choice of the exporfent

Lemma 5.1. Let B be a column stochastic matrix represented as in (48).TLdte
defined as in (50), and let be a stationary probability vector d® and thus off, i.e.,

(51) Tw=w, (w,e)=1

wheree' = (1, - -, 1). For everye > 0 there exists a matri¥, and a vecton € R7,
which depends ow ande, such that

(52) Tw = Vew + (w, e)b
and
(53) r(VJ)=e.

Moreover, (51) holds if and only i — V.w =5 .

Proof. Consider for eachy = 1,---,r, the decomposition of the diagonal blocks of
B in (48) into their eigenprojections, i.ely; = P;+Z;, 1< j <, wherer2 = P;,
P;Z; = Z;P; =0, 1¢ o(Z;) C {|\ < 1}. Then for anyt, F; = [+ Fy)]t =
[+ P+ Z)]t =[P+ 3(I + Z;)(I — P;)]* and therefore

t
(54) I { (1+Z)] I-P), 1<j<r
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Foreachj=1,---,r, letg; € 2}’ be the unique stationary probability vector of the
irreducible matrixt, i.e.,

(55) Fji?j zij = Pjij, <i‘j,€j> = 17
wheree; € R, e = (1,---,1).

Since for everyr € )’

Pl 1
lim 7 = Pjz,
t—oo <$,€j> <l‘,€j> |

and the rate of convergence is independent ofve can find a positive integer;
such that fort > p;

(56) F;x >A-€ePjx, j=1,..,r
By hypothesisy(Fp) < 1 and thus, there is a positive integgrsuch that

(57) r(FP) < e.
Let
(58) t=max{p;, j=01,---,r}

and definel/; = '/ — (1 - ¢)P;; see (54). Thus,

f
(59) U; =P, + [;(1 + zj)} (I-P)).

We provide now the core matrix

(2u+F)] 0 . . . 0
(60) V.= E G, u. . . . 0 ET,
G, o . . . U

Whereéj are the blocks in (50). It follows from (56) thafU;) =€, 1 < j < r. Thus,
from (57) and (58) we have that

(61) r(V) = maxr(£), €] = e

which is the desired condition (53).

We provide now the vectob = b(w, €). Let w € R} be any stationary probability
vector of B. It is easy to show that the permuted vecior="ETw is a convex

combination of the vectors; defined astT = (0,---,Z;,---,0), 1< j < r, where

n;

Z; € Ry’ are as defined in (55). In other words, there exist numpers
O§M3§17 j:l,"'ﬂ", Zujzla
=1

such that
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r
w = E HiZj,
i1

i.e., " = (0, pads, - -, ur,); cf. (49). We define = Ec, wherec” = (0, ¢f,---,¢]),
andc; = (1 —e)z;, j =1,---,r. The identity (52) follows.

Using the identities (51) in (52) one obtains— V. w = b, and conversely. The proof
is complete. O

We note that during the proof of Lemma 5.1, we have provided, foreanyO,
the decompositioT” =V, + (1 — €)EPET, whereV, is given in (60) and

00 ...0
po|O P .0
00 ...P

Let us now check that all the requirements of Theorem 3.7 are fulfilled. We
chooseR and S(x) as in Example 2.1. We have already shown that (5), (6), and (25)
hold for allz € & = {x € R} : Rz > 0} C IntR}". SinceZ" = & = R", the
operator-functionS(z) is 77"-continuous onzZ. The existence of a convergent core
V is guaranteed by the previous lemma with= V.. The convergence properties of
P(x)V and J(xz) can be shown as in [22]. Thus, all hypotheses of Theorem 3.7 are
fulfilled and we have the following result.

Theorem 5.2. Let B be an irreducible stochastic matrix. Then Algorithm 3.3 is locally
convergent to the unique stationary probability vectoBefand its rate of convergence
is given by the estimatgt — 2 || < ¥z — 2|, wherex < \/e.

It is worth mentioning that the rate of convergence can be made arbitrarily fast.

For a general stochastic (reducible) matfx partitioned as in (48), Algorithm
3.3 can be appropriately adapted to obtain the same result as in Theorem 5.2. The
aggregation mayk is constructed as a direct sum of aggregation maps R —

R™i, j=1,---,r, for some appropriate numbens;, with ij <m,ie.,
=1

R=0PR1®RD... 5 R,,

where 0 denotes the zero-map. This means that the matrix (7) has a diagonal block
structure. Similarly, the disaggregation operat6rs S(u) is defined as

S=0® S1(uy) @ ... ® Sp(u,),

whereu™ = (0,ul,...,ul). Moreover, by a proper choice @¢;, j = 1,---,r, one
can obtain all extreme stationary probability vect@tslt follows that in this case,
Algorithm 3.3 can be easily implemented for parallel computations.

The construction of a convergent cdreof the operator under consideratidhis
based on the primitivity concept of the irreducible components of the associated matrix
T. Lemma 5.1 shows that there is always possible to reach a very fast convergence,
i.e., when the appropriate powkis used in (50). This is of course a theoretical result,
in practice, this may be in some cases rather costly. This happens if the transient block
Fy is large and has its spectral radius close to 1, and if the number of ergodic blocks
is small and the blocks are sparse. In either of these two casetarge. The same
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argument implies that, in light of (61) and (58), if the transient garts absent in the
representation (48) aB, and the diagonal blocks in (48), i.e., the ergodic blocks, are
essentially smaller than the size Bfitself, then the core operator is obtained with
few computations and thus fast rate of convergence is easily and cheaply achievable.

Thus, our Lemma 5.1 offers a possible explanation why the aggregation/disaggre-
gation algorithms converge fast in the nearly decomposable case as observed in prac-
tical computations and as shown by Cao and Stewart [2]. In addition, the lemma
suggests that fast convergence can be achieved in other situations, namely, when the
diagonal blocks are small in size, and the off-diagonal blocks are sparse with ele-
ments which need not to be small, i.e., in the case of stochastic matrices representing
Markov chains with many states small in size, but not necessarily uncoupled.

The following lemma offers another less expensive way how to guarantee a con-
vergent core/ for general stochastic matrii.

Lemma 5.3. Let the exponent in (50) be such that at least one columnﬁ)ff (not
necessarily all of them) is strictly positive,= 1,---,r. Let cJT = (.- ,yg;,g) with
vi=min{f},:1=1---,n;}, and lets” = (0,c],---,c]) ETandV =T — (., e)b,
e'=(1---,1). Thenr(V) < 1,b >0, and

Bw=Tw=w, (w,e) =1,
holds if and only ifw — Vw = 0.

In view of (48) there are actuallynoted stationary probability vectors and namely
those uniquely determined by the irreducible blo¢ksj = 1,- - -, r. These stationary
probability vectors are calleelxtremal A systematic way to compute all the extremal
stationary probability vectors, say by iterative or semiiterative methods, consists just
of computing successive (in general) iteration sequences with the standard basis
elements as starting vectors respectively; see Marek and Szyld Ta8abe [3p
In conjunction with applying aggregation/disaggregation algorithms an efficient way
to determine the block structure & as shown in (48) is needed. To this purpose
Tarjan’s algorithm as implemented by Duff and Reid i§ recommended.

In the rest of the section we present some numerical experiments which illustrate
the convergence of the iterative aggregation method for stochastic matrices. Consider
the 8x 8 stochastic matrix given in Courtois [6, Appendix 3]. There, an aggregation
to k3 is suggested, wheré'; = {1,2, 3}, G, = {4,5}, and G3 = {6,7,8}. The
largest eigenvalue of the stochastic matrix which is less than one has value .9998 and
thus the power method is extremely slow. Similarly, for the Gauss-Seidel iteration
operator, the largest eigenvalue less than one has value .99878. In contrast, the iterative
aggregation method with the aggregation just mentioned and inner residual tolerance
of 10~° converged to the stationary probability distribution to withim1@n 14 outer
iterations, using a total of 34 inner iterations.

The sample matrix is nearly decomposable, and has about three zero elements in
each row. In order to test the iterative aggregation method in more general stochastic
matrices, we increased the value of each off-diagonal entry by a fixed numbed
subtracted from the diagonal entry the corresponding amount, so the matrix remains
stochastic. In Table 1 we report the number of outer and inner iterations for different
values ofa. In all cases, the inner iterations were stopped when the change from the
previous iterate was below 10. The method was stopped when the current iterate
did not change by more than 1f
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Table 1. Iterative aggregation method for stochastic matrices

« outer iter. total inner iter.
0.0 14 34
3.16x 107 14 34
1.0x 1076 14 34
3.16 x 10°6 14 34
1.0x 10°° 15 34
3.16 x 10~° 15 35
1.0x 104 15 36
3.16x 104 15 34
1.0x 103 15 29
3.16 x 10°3 15 23

6. Conclusion

We have provided a proof of convergence for an iterative aggregation method for
general stochastic matrices, not necessaryly nearly decomposable matrices. Our proofs
are more general than that, they applied to Markov processes in general Banach spaces.
The proofs are based on the idea of associating to the Markov operator a core operator
which is zero-convergent, and studying the convergence of the iterative aggregation
method for the new associated system.
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