1. Consider the 2×3 matrix

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Show an example of a matrix X so that $AX = I$, but such that $XA \neq I$ (show the two products explicitly); see last sentence in book in page 117.

2. Let $A \sim B$, i.e., there exist nonsingular matrices P, Q such that $B = PAQ$.
 (a) Show that if B is singular, then A is singular.
 (b) Show that if A is singular, then B is singular.

3. Let

$$A = \begin{bmatrix} 4 & -8 & 5 \\ 4 & -7 & 4 \\ 3 & -4 & 2 \end{bmatrix}.$$

(a) Compute the LU factorization of A.
(b) Let $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find the solution to $Ax = b$ using the LU factorization from (a).
(c) Check that $L^{-1}A = U$.

4. (a) Give an example of a 2×2 matrix A which cannot be written as $A = LU$, but which it can be permuted so that there exists an LU factorization of the permuted matrix $PA = LU$.
(b) Give an example of a 2×2 matrix A with $A_{22} = 0$ for which an LU factorization exists and the matrix U has a nonzero entry in the (2,2) position.