1. Let

\[A = \begin{bmatrix} 4 & -8 & 5 \\ 4 & -7 & 4 \\ 3 & -4 & 2 \end{bmatrix}. \]

(a) Exhibit \(A^{-1} \), (Hint, go back to problem 1.2.5).
(b) Check that \(AA^{-1} = A^{-1}A = I \).
(c) Compute \(A^T \), and check that \((A^T)^{-1} = (A^{-1})^T \).

2. (a) Let \(A \) is as in part 1, and \(b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \). Find the solution to \(Ax = b \) using two different methods, first using Gaussian elimination (forward elimination and back substitution), and then by computing \(A^{-1}b \).
(b) Why is this solution unique?