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The magnetic field and spin dependence of quasi-particle
mass enhancements in CeBg
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The field and spin dependence of the quasi-particle mass enhancements are
examined in the paramagnetic and ferromagnetic states close to a quantum
critical point. The down-spin quasi-particles are found to have heavier masses
than the up-spin quasi-particles. It is also found that the spin dependence of
the quasi-particles. It is also found that the spin dependence of the quasi-
particle mass enhancements is through a factor of the inverse (spin dependent)
Fermi wave vector. The mass enhancements drop to the spin independent value of
unity at sufficiently high fields, where the magnetization starts to saturate and
spin-flip scattering is suppressed. The results are compared with experimental
results on CeBg.

1. Introduction

The subject of the spin dependence of the quasi-particle mass renormalizations has
been the subject of recent interest. It has been noticed that in strong magnetic fields,
the quasi-particle mass enhancements are spin and field dependent. CeBg has been
classified as a heavy fermion compound as it shows a large logarithmic temperature
variation of the resistivity at high temperatures [1, 2]. The material has a cubic
structure and the lowest energy crystal field level has been identified as the 'y quartet
[3]. The I's level has a magnetic moment and an electric quadrupole moment.
The material undergoes magnetic and quadrupole transitions at 7Ty~2.4 and
Tp~3.3K [4]. High field de Haas—van Alphen measurements on Ce,La,_.B¢ for
x <0.05, showed that the observed de Hass—van Alphen oscillations originated from
two spin components of the Fermi surface, but for x > 0.05 the amplitude for one
component gradually decreased without any change in topology of the Fermi surface
[5]. For x=1, CeBg¢ only showed oscillations originating from one spin component
of the Fermi surface [6]. An analysis of the amplitude of the harmonics, for x <0.05,
suggested that the down-spin sheet of the Fermi surface had the larger mass enhance-
ment and had larger scattering rates [7]. Furthermore for x > 0.05, it was concluded
that the quasi-particle mass of the spin-down sheet of the Fermi surface became so
heavy it could no longer be seen. Similar effects could also be anticipated to occur in
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weak ferromagnets such as ZrZn, [8, 9]. For the materials under consideration,
it is expected that the k& dependence of the self-energy is negligible. In fact,
the dynamical mean-field approximation (DMFT), where the self-energy is comple-
tely k-independent, has often been used to describe the properties of strongly
correlated electron systems such as the quasi-particle peak in the electronic excitation
spectrum [10]. In the DMFT approximation, the quasi-particle mass renormalization
is identical to the wave function renormalization [11].

In this note we shall display the field dependence and spin dependence of the
quasi-particle mass renormalization, calculated for the single-band Hubbard
model within the Random Phase Approximation (RPA) for both weak-
ferromagnetic and paramagnetic phases. The use of the RPA near the quantum
critical point is justified in terms of the results obtained by Hertz [12] using a
renormalization group analysis. We find the Goldstone modes of the ferromagnet
do not appreciably contribute to the electronic self-energy. This finding implies
that the physics of the ferromagnetic side of the quantum critical point should be
extremely similar to that of the paramagnetic side. It is found that the self-energy
near the Fermi energy is only slightly dependent on k, and the quasi-particle
mass renormalization is spin dependent and is governed by the frequency depen-
dence of the real part of the self-energy. This suggests that the region of applic-
ability of the DMFT approximation might extend into the weakly ferromagnetic
phase.

2. Quasi-particle mass enhancements

The system is described by the Hamiltonian
ﬁ = Zé‘kﬁktf + Z U}’lAmﬁll (1)
ko i

where ¢, describes the dispersion relation of the Bloch states of non-interacting
electrons, and U represents the strength of a short-ranged repulsive Coulomb inter-
action between pairs of electrons. Unlike the work of Edwards and Green [13] or of
Wassermann et al. [14], the model we use does not invoke two types of electronic
states (albeit hybridized) and does not assume strong spin—orbit scattering.
Therefore, unlike their work, we do not expect to find a metamagnetic transition
caused by a large Zeeman field splitting which removes states with local character
from the Fermi energy.

We apply a magnetic field H parallel to the z-axis, so a magnetization M(H)
develops along this direction and the continuous spin-rotational symmetry of
the Hamiltonian is broken. In the mean-field theory developed by Stoner [15-17]
and applied by Wohlfarth and coworker [18, 19], the Coulomb interaction is
expressed as

+ Uhyit, + Uiyt — Ui, )
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The first term on the right hand side is the fluctuation term which is to be subse-
quently neglected. The linearization of the interaction has the effect of producing
a rigid spin dependent shift of the electronic bands. The electronic sub-band of spin o
is shifted by an energy of Un_, — ugHo, which depends on the magnetic field H and
the total occupation number, per site, of electrons with spin —o. This shift produces
an exchange splitting, A, between the sub-bands. The exchange splitting is defined by

The spontaneous magnetization is obtained from the self-consistent solution of the
mean-field equations

_ _ 0 [ A A T

n—n,= def(e) P<8 +3+ MBH> - P(S 3 N«BH> )
and

_ _ o0 [ A A T

ny+n, = —oodSﬂS) P(S T3t MBH> + ,0<8 5 MBH> Q)

in which p(¢) is the one-electron density of states, per spin, per site. At 7=0
and H =0, these equations only have a paramagnetic solution M(0)=0 for values
of U less than the critical value U.. For U greater than U,, the ferromagnetic state
with M(0)#0 has lower energy than the paramagnetic state. As shown by Stoner
[15-17], the critical value U, is determined by

Uep(p) = 1 (©)

This critical value of U= U, determines the quantum critical point, at which
the paramagnetic state becomes unstable to the ferromagnetic state at 7=0. The
non-trivial ferromagnetic solution of the self-consistency equations are found for
U > U.. In the ferromagnetic state, the up-spin sub-band is depressed by an energy
of —(A/2), while the down-spin sub-band is raised by an energy of A/2. Thus, in
zero-field, ferromagnetism produces a spontaneous splitting between the up-spin and
down-spin Fermi surfaces. The dependence of the magnetization M(H) on the
applied field is shown in figure 1. In the ferromagnetic state, M(H) is reasonably
well described by the 7"— 0 limit of the Edwards—Wohlfarth equation [19]

(M(H))z_ | 20)  pgH o
M(0) Up(p) — 1 M(H)

where M(0) is the value of the spontaneous magnetization, and the coefficient of
upH/M(H) is twice the uniform static longitudinal susceptibility x*°(0,0) of the
magnetically ordered state.

The self-energy due to the emission and absorption of transverse spin fluctua-
tions is calculated within RPA [20-22]. The RPA approach is justified by appealing
to the renormalization group approach of Hertz [12]. Hertz showed that, near
the quantum critical point, since the system is above its upper critical dimension,
it is governed by a mean-field fixed point, with the Gaussian fluctuations about the




2584 P. S. Riseborough

2ma?Uurn?
-—10

12.75

—+—12.76

——12.8

—%—12.92

0 el 1 1 1 1 1 1 1 1 1 PY 13-16
0 0.2 0.4 0.6 0.8 1

ZmaZ],LBH/h2

Figure 1. The magnetic field dependence of the magnetization M(H) (in units of the Bohr
magneton wp), for various values of U. The critical value of U, is given by 12.761, so
the largest value of the applied field shown corresponds to a Zeeman energy of the order of
one-tenth of the width of the occupied band. The M(H) curves corresponding to ferromagnetic
states in applied fields are denoted by (decorated) solid lines.

fixed point. The Gaussian fluctuations about the mean-field fixed point are in a
one to one correspondence with the paramagnon excitations found in the RPA
around the Hartree-Fock fixed point. Thus, the recently developed understanding
of quantum critical points shows that the RPA approach has the correct
functional form to describe the physics close to the magnetic instability. It shall be
noted that for a weak-ferromagnet [23], the Goldstone modes connected with the
broken spin-rotational invariance [24, 25] do not appreciably contribute to the
mass enhancements. It is found that the self-energy is dominated by the resonance
in the continuum of Stoner spin-flip excitations. As a result of the diffuse and
damped nature of the excitations, the resulting self-energy is a smooth function of
k near the spin-split Fermi surfaces. However, the self-energy is rapidly varying as a
function of frequency. The spin dependent wave function renormalizations are
defined by

0
ZoH)=1=300 (@ k)| )

=0

Since the self-energy is roughly independent of k near the Fermi surface, the
quasi-particle mass enhancements are given by Z,(H). The mass enhancements are
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calculated from the expression

U m Jk”“” ro dvImy” (v + in. q)

0
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T A N2127
w=0 (27[) h kF(r kpy—kp —oo Tt v
Ud m J o0 dy
-3 | 4 qJ —Imx” (v +in, q)
@)’ Wkg, Jo 0T
®<€kFﬂ7 - ek[-};—q) ®(€krﬂr - ek["d+t/>
X J—
ekF,,—q €k, —V ean-H/ €k, —V

L Jood JO Dy (v + in q)
rererl KL B n.q

y ®<€de,4 - ekp,n> B ®(€de+,, - ekH> o)

ekFo—z/ - ekaa -V ekFg+¢[ - ekF—u -V

where x77%(v,q) is the transverse dynamic susceptibility. Within RPA, in the
magnetically ordered phase at zero field, the imaginary part of the transverse
susceptibility contains a delta function contribution with strength M at positive
energies corresponding to the spin wave pole

hv, = Dg* (10)

where D is the spin-wave stiffness constant [24] and is given by

D 3;ij Z [(fm ;‘f/w)vzgk _ (flm ;fkl)wsklz]. (11

k

This branch of modes are the Goldstone excitations which dynamically restore the
spontaneously broken spin-rotational invariance. This branch of excitations only
exists for a range of small ¢ and positive frequencies, where
Chpyy — Chp, > 0. (12)
It is seen that, due to the above kinematic restriction, the Goldstone modes do not
contribute to the mass enhancements. The first term of equation (9) contains the
singular part of the mass enhancement and it can be written in the form
Pd m (ke - ‘
—o S| g Re 0 + i) (13)
QCnr) kg, Jikp—k,
This expression also holds for paramagnetic materials close to the quantum
critical point. If a magnetic field is applied, it induces a magnetization and, thereby,
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introduces a total spin-splitting of magnitude

ZMBH
1 — Up(w)

is the Stoner continuum. The exchange splitting acts to enhance the spin-splitting
above the Zeeman splitting expected for non-interacting electrons. Therefore, for
both paramagnetic and ferromagnetic phases, an applied magnetic field creates a
sharp dispersive branch of massive spin waves that start at ¢ =0 with a frequency
given by hv =2upgH. That is, the spectrum contains a delta function branch at
the spin wave pole hv, = 2uzH + Dg*. This branch of massive collective modes
enters the Stoner continuum at a finite value of ¢, and for larger ¢ values it exists
as a broadened resonance. Therefore, in the presence of an applied magnetic field,
one has

A +2upgH = (14)

M

Rex” °(0 + in, 4)“m-

(15)
This equation holds quite generally for small ¢ and is independent of the type of
model used, in that it can also be derived by a Landau—Ginzberg analysis for the case
of a conserved vector order parameter. The above equation shows that the applied
field magnetic suppresses spin-flip excitations. Using this result, one finds

7 a1 _ 3kp In 2upH + D(kpy — km)z
7 kee  \2upH + D(kpy + kp,)*

%

(16)

3 (st + (M)3)
(1 +oM)'? 2pupH () + (M/3)
where ky is the value of the Fermi wave vector for M =0. The spin dependence of
the singular part of the quasi-particle mass enhancements is entirely contained in a
factor of the spin dependent Fermi momentum. The boundary terms in equation (9)
are only important close to the fully polarized state where M ~ 1, in which case
they have the effect of cancelling the singular part of the mass enhancement. This
cancellation results in the quasi-particle masses for both spin-directions in becoming

unrenormalized.

3. Discussion

The field dependence of Z,, is shown in figure 2, for various values of U. The largest
value of the field roughly corresponds to a tenth of the width of the occupied portion
of the band. It is seen that for M =0 the quasi-particle mass enhancements are spin
independent. For the case where there is a finite value of the magnetization, the
spin-rotational symmetry of the system is broken and, therefore, the physical
properties become spin dependent. The dependence of the contribution of the
correlations on the inverse of the spin dependent Fermi wave vector implies that
the although the spin dependent quasi-particle masses may be observed directly
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Figure 2. The spin dependent quasi-particle mass enhancements Z, as a function of the
applied field. In the unpolarized state, the quasi-particle masses are spin independent, whereas
they are spin dependent in spin-polarized states. In the ferromagnetic stats, the down-spin
enhancements are denoted by the filled symbols, and the up-spin enhancement by the open
symbols.

in de Haas—van Alphen experiments, the spin dependence of the correlations will not
have any remnant effects on the low-temperature electronic specific heat.

The form of the field-dependence, shown in figure 2, depends strongly on the
proximity to the critical point. For example, for a ferromagnet in zero field, the mass
enhancement in equation (16) contains a singular term that diverges logarithmically
as M approaches zero.

Z,~1 —6—kF1n<—kFT - k”)

6 M
= iro() “”

as was previously derived by Brinkman and Engelseberg [22]. Whereas in the para-
magnetic state where the terms of higher order in M can be neglected, the transverse
fluctuations produce a contribution to the enhancement of the form

1
~ In{l+——-——). 1
+3m +3(1—Up(u))> (18)

Due to the spin-rotational invariance of the paramagnetic phase, the longitudinal
fluctuations also provide a contribution to the mass enhancement which differs
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from the above result only by a multiplicative factor of (1/2). Therefore, in the
paramagnetic phase, one recovers the result of Doniach and Engelsberg [20] or
Berk and Schrieffer [21]

9 1

Therefore, in zero field, the effective mass diverges as the quantum critical point is
approached from both sides.

The effect of the applied magnetic field is that of increasing the magnetization
which also suppresses the spin-flip excitations and thereby tends to reduce the mass
enhancements. For a paramagnet in weak applied fields, the positive term linear in
M in the expansion for the down-spin mass enhancement due to the spin-split Fermi
surface, has the effect of producing a slight initial increase in the down-spin mass
enhancement after which it goes through a maximum and then decreases as the spin-
flip scattering is suppressed. For sufficiently strong fields, the mass enhancements of
the enhanced paramagnetic almost show the same scaling with the magnetization
as the ferromagnets, as can be seen in figure 3. The mass enhancements do not
follow the singular contribution of equation (9) as M — 1, since as the magnetiza-
tion approaches saturation, the boundary terms in equation (16) become important.
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Figure 3. The mass enhancements as a function of magnetization. The legend is the same as
in figures 1 and 2. It is seen that, in the ferromagnetic state, Z, almost scales with the
magnetization. For sufficiently large magnetization, the spin-flip scattering and the effective
masses are suppressed.
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In this limit, the boundary terms cancel with the singular term causing the
mass enhancements to drop to unity. Near the fully polarized limit, the effects of
vertex corrections are anticipated to be large [26, 27]. However, the cancellation of
the mass enhancements is expected from general arguments. The vanishing of the
up-spin mass enhancements is expected since the fully polarized Stoner state is an
exact eigenstate of the Hamiltonian, albeit not the groundstate, and remains an exact
eigenstate even if the system has any number of up-spin electron excitations. Hence,
the up-spin quasi-particle has a mass enhancement of unity for the fully polarized
state. The case of down-spin excitations is more subtle, but also produces a
down-spin quasi-particle mass enhancement of unity for the fully polarized state.
In all cases, the mass enhancements are found to obey the inequality

Z, > 7, (20)

showing that the down-spin quasi-particles are heavier than the up-spin quasi-
particles.

The inequality between the up-spin and down-spin quasi-particle masses can be
explained by using the ideas of Reynolds et al. [28] and of Klenjberg and Spalek [29]
on the large U limit of the model. Using a Gutzwiller-like approximation, the effec-
tive tight-binding matrix element for an electron for spin o to hop from site 7 to site j

is given by
1 —n;
loimj = Zi’j(l — I_l-j ) (21)
], 0

since the large value of the Coulomb interaction U prevents an electron from
hopping onto the site j if it is already occupied. The factor in the denominator
explicitly excludes double counting of the correlations due to the Pauli exclusion
principle. Therefore, for a spatially homogeneous system, one finds that the
dispersion of the quasi-particle bands is narrowed by a spin dependent factor
and that

2 2

Z.(M) %%[1 —E—a%} 22)

where 7 is the average number of electrons per site. Hence, the down-spin quasi-
particles have higher effective masses than do the up-spin quasi-particles. Also, the
down-spin mass may be expected to show an increase with increasing magnetization.
These are in agreement with our findings and also with measurements of the
de Haas—van Alphen oscillations in Ce,La;_,B¢ [7]. However, as seen in figure 3,
the magnetization dependence of the wave function renormalization found in our
results is nonlinear and depends strongly on the proximity to either the ferromag-
netic phase or to the fully polarized state, in contrast to the slave boson result.
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