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This article puts Korteweg and de Vries’s manuscript (published in the
Philosophical Magazine in 1895) in historical context. The article highlights
the importance of the Korteweg–de Vries equation in the development of
concepts used in nonlinear physics and also mentions some of their recent

10 applications.
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1. The early history

Solitons or solitary waves are large-amplitude excitations with finite spatial widths
15 which are found in certain nonlinear systems and which can propagate over long

distances without changing their shapes. Solitary waves also have the property that,

although they may interact strongly with other solitary waves, they emerge from the

interaction intact. The first report of the observation of a solitary wave was written

by John Scott Russell. His account is reproduced below:

20 J. Scott Russell. Report on Waves, Fourteenth Meeting of the British Association
for the Advancement of Science, 1844.

‘‘I was observing the motion of a boat which was rapidly drawn along a nar-
row channel by a pair of horses, when the boat suddenly stopped – not so the mass
of water in the channel which it had put in motion; it accumulated round the

25 prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation,
a rounded, smooth and well-defined heap of water, which continued its course along
the channel apparently without change of form or diminution of speed. I followed it
on horseback, and overtook it still rolling on at a rate of some eight or nine miles

30 an hour, preserving its original figure some thirty feet long and a foot to a foot and
a half in height. Its height gradually diminished, and after a chase of one or two miles
I lost it in the windings of the channel. Such, in the month of August 1834, was
my first chance interview with that singular and beautiful phenomenon which I
have called the Wave of Translation.’’
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35 This observation propelled Scott Russell to commence experimental investiga-
tions of solitary waves in water tanks. Empirically he found that the velocity of the
wave, v, depended on its amplitude. Scott Russell became convinced that, were it not
for viscosity, the solitary wave would retain its shape indefinitely. His observations
seemed to be in contradiction with the theoretical description of hydrodynamics,

40 since it was thought that such waves should change shape, becoming progressively
steeper at the front until the wave eventually breaks. The first step in supporting
Scott Russell’s description of these waves was taken in 1876 when Lord Rayleigh
published a theoretical paper in this journal [1] which supported John Scott Russell’s
experimental observations. In this paper, Lord Rayleigh considered an incompress-

45 ible fluid with negligible viscosity and showed that, if the amplitude of the wave, a, is
small compared with the depth of the canal h (h� a), the profile of the wave is
given by

uðx, tÞ ¼ asech2
ðx� vtÞ

�
ð1Þ

where the wave’s spatial extent is given by �2 � 4
3 h

2ðh=aþ 1Þ and the velocity by
v2� g(hþ a). The solitary wave’s shape is sketched in Figure 1. However, the

50 approximate nature of Rayleigh’s treatment and McCowan’s [2,3] subsequent
treatments of the solitary wave phenomenon suggested that the solitary wave only
approximately retained its shape. The tendency for large-amplitude waves to break
can be illustrated by examining the (dimensionless) nonlinear partial differential
equation [4]

@u

@t
þ

�
1þ u

�
@u

@x
¼ 0 ð2Þ

55 which can formally be solved to yield

uðx, tÞ ¼ f ðx� ð1þ uÞtÞ ð3Þ

where f is an arbitrary function. Since this solution describes a wave with a local
velocity v that depends on its local amplitude, the nonlinearity shifts its shape.
This can be seen by considering an initial condition given by

uðx, 0Þ ¼ f ðxÞ ð4Þ

u(x,t)

x

h

g

v

Figure 1. A sketch of the profile of a long solitary wave u(x, t) moving with velocity v, in a
very long rectangular channel of depth h.
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where f is any positive single-valued function. The solution at finite t can be simply
60 obtained from the t¼ 0 value by translating the value at x0 through a distance

(1þ f(x0))t. As seen in Figure 2, the function changes its shape and may even not be

single-valued for sufficiently large times, signifying that the wave has broken.
A breakthrough came about when Korteweg and de Vries [5] (see the facsimile

reproduction following this paper), starting from a hydrodynamic description,
65 derived a nonlinear partial differential equation which had solutions in which the

nonlinearity is counterbalanced by a dispersive term which stabilizes the shape of the

solitary wave, thereby vindicating Scott Russell’s observations. The partial differ-

ential equation arrived at by Korteweg and de Vries’s reasoning had the same form

as one previously studied by de Boussinesq [6]. The partial differential equation
70 written in terms of dimensionless variables with the form

@u

@t
þ

�
1þ u

�
@u

@x
þ
@3u

@x3
¼ 0 ð5Þ

has been named in honor of Korteweg and de Vries (KdV). The single-soliton

solution can be found by assuming that the solution travels with (dimensionless)

velocity v and does not change shape. This amounts to the assumption that the

solution depends on space and time only through the combination x� vt, which
75 makes the equation a perfect differential. The equation can be integrated a second

time by introducing an integrating factor @u/@x. The single-soliton solution found by

Korteweg and de Vries is given by

uðx, tÞ ¼ asech2
ðx� vtÞ

�
ð6Þ

in which the amplitude, a, of the wave and its the spatial extent, �, depend on the

velocity and are given by

a ¼ 3ðv� 1Þ ð7Þ
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Figure 2. The time evolution of a nonlinear wave described by Equation (2). The solution
becomes multi-valued at large times.

Philosophical Magazine 3



XML Template (2010) [10.11.2010–11:03pm] [1–10]
K:/TPHM/TPHM_A_530758.3d (TPHM) [PREPRINTER stage]

80 and

� ¼
2ffiffiffiffiffiffiffiffiffiffiffi
v� 1
p ð8Þ

in agreement with Lord Rayleigh’s analysis [1] to within terms of order a/h.
Korteweg and de Vries’s mathematical description of non-dispersive solitary waves
in continuous media [5] was a major milestone in the development of nonlinear
excitations. It showed that there exist essentially nonlinear excitations which cannot

85 be obtained by simply perturbing the excitations of the linearized system.

2. The Fermi–Pasta–Ulam problem and the KdV equation

Another major milestone was reached in 1955 when Fermi, Pasta and Ulam [7], with
the help of M. Tsingu who coded and ran the computations, numerically investigated
the vibrations of a linear chain of up to 32 atoms coupled by weakly nonlinear

90 interactions. For a chain with purely harmonic interactions, the distribution of
energy amongst the harmonic degrees of freedom would remain independent of time.
It was expected that, if the system was started in a single approximate normal mode,
the anharmonicity would cause the system to gradually relax into a state of thermal
equilibrium after the atoms had undergone a sufficiently large number of

95 oscillations. In particular, it was expected that the energy of the system would
flow out from the initial mode and eventually be distributed amongst the other
approximate normal modes of oscillation according to a Boltzmann-like distribution
function. However, what they found was surprising. Although the system initially
shared its energy with other modes, as expected from an analysis originally

100 performed by Rayleigh, this process did not persist at longer times. The motion that
Fermi, Pasta and Ulam observed was quasi-periodic in that it regularly almost
recovered its initial state. The system did not relax into a state of thermodynamic
equilibrium and did not show the property of mixing that would lead to the
approximate equipartition of the energy that they had expected. In 1965 Zabusky

105 and Kruskal showed that, in the continuum limit, the Fermi–Pasta–Ulam problem
mapped onto the KdV equation [8]. Furthermore, they found that although the
equation was nonlinear, the solitary waves described by the KdV equation appeared
as if they did not interact with each other. That is, after two solitons collide, they
emerge with their shapes and velocities unchanged as seen in Figure 3. The only

110 signature of the collision was a shift in their phases. The shifts in the space-time
trajectories are sketched in Figure 4. Owing to these particle-like attributes of the
wave pulse excitations of the KdV equation, Zabusky and Kruskal [8] first penned
the term ‘‘soliton’’ to describe them.

Zabusky and Kruskal found the properties of the two-soliton solutions by
115 numerical methods. Their amazing discovery sparked a period of intensive

investigation aimed at finding multi-soliton solutions of the KdV equation
analytically. This period was marked by the development of powerful and elegant
mathematical methods, such as the inverse scattering method. The properties of the
two-soliton solutions found by Zabusky and Kruskal were proved analytically by

120 Lax [9]. In 1967 Gardner et al. [10] found that it was possible to construct solutions

4 P.S. Riseborough



XML Template (2010) [10.11.2010–11:03pm] [1–10]
K:/TPHM/TPHM_A_530758.3d (TPHM) [PREPRINTER stage]

to this equation which describe finite numbers of solitons and continuous small-
amplitude ‘‘radiation’’ that emerge from arbitrary initial conditions. Thus, the KdV
equation was the first nonlinear field theory that was found to be exactly integrable.
The unusual properties of collisions of two solitions were found to extend to the

125 multi-soliton case. In 1971 Hirota [11], after reducing the KdV evolution equation to
a homogeneous equation of degree 2, discovered the N-soliton solution. Just as exact
integrability for systems with N degrees of freedom implies the existence of N
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Figure 3. The wave profile of two colliding KdV solitons, at various times before and after the
collision. The fast-moving large-amplitude soliton collides with the slow-moving small-
amplitude soliton. Note the decrease in amplitude that occurs at the time of interaction.
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Figure 4. A sketch of the asymptotic world-lines of colliding solitons, indicating the type of
shifts caused by the interaction. The interaction region where the collision takes place is
contained within the dashed circle.
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conservation laws, one might expect that an exactly integrable continuous system

implies the existence of an infinite number of conservation laws. Miura et al.
130 discovered that, in addition to satisfying conservation laws such as conservation of

mass, energy and momentum, the KdV equation satisfied eight more conservation

laws [12]. Furthermore, they also established a method for constructing an infinite

number of conservation laws [12]. The exact integrability of the KdV equation was

subsequently proved to be connected with it, satisfying the infinite number of
135 conservation laws [13,14]. The infinite number of conservation laws puts extreme

constraints on the form of solitons, their interactions and the regions of the

high-dimensional phase space accessible to the system. The lack of approach

to equilibrium for finite Fermi–Pasta–Ulam systems remains a subject of

research [15,16].

140

3. Solitons and breathers in other integrable systems

The work of Lax [9] made it clear that there may be other exactly integrable one-

dimensional continuous systems. It is now known that the properties of the KdV

equation are generic, in that they are characteristic of a whole class of exactly

integrable systems. The simplest members of this class include the KdV equation, the
145 modified KdV equation, the sine–Gordon equation and the nonlinear Schrödinger

equation. The sine–Gordon equation has a relativistically covariant form and obeys

the equation of motion

@2u

@t2
�
@2u

@x2
þm2 sin u ¼ 0 ð9Þ

which can be derived from the Lagrangian density

L ¼
1

2

��
@u

@t

�2

�

�
@u

@x

�2

þ 2m2 cos u

�
ð10Þ

and in which m defines a characteristic mass scale. The energy H and momentum P
150 densities can be found by standard methods and are given by

H ¼
1

2

��
@u

@t

�2

þ

�
@u

@x

�2

þ 2m2ð1� cos uÞ

�
ð11Þ

and

P ¼

�
@u

@t

��
@u

@x

�
: ð12Þ

The approximate small-amplitude plane-wave-like vibrations of the sine–Gordon

equation have the dispersion relation

!2 � k2 ¼ m2 ð13Þ
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similar to the excitations of the Klein–Gordon equation. The sine–Gordon equation
155 also has large-amplitude soliton and anti-soliton solutions of the form

uðx, tÞ ¼ 4 tan�1
�
exp

�
�
�ðx� vtÞ

�

��
ð14Þ

where the length scale is given by �¼m�1 and the factor �

� ¼ ð1� v2Þ�
1
2 ð15Þ

produces a Lorentz contraction. These soliton excitations are particle-like (with a

particle mass of 8m) since their energy and momentum densities have a pulse form

that is the same as the sech2 shape of the KdV soliton. Simple analytic two-soliton

160 and soliton–anti-soliton solutions were discovered by Perring and Skyrme [17] in

1962 after numerical integration of the equation of motion. In addition to the soliton

and anti-soliton excitations, the sine–Gordon equation also has large-amplitude

breather solutions given by

uðx, tÞ ¼ 4 tan�1
�
sin!�ðt� vxÞ

!� cosh �ðx�vtÞ�

�
ð16Þ

where

!2 þ ��2 ¼ m2: ð17Þ

165 The wave profile of the breather is shown in Figure 5. The breather is an oscillating

excitation with a finite spatial width, and travels with velocity v. The breather modes

are quite distinct from the small-amplitude vibrational modes of weakly interacting

or non-interacting translationally invariant systems, where the vibrations extend

over distances which are quite large and can be comparable to the size of the entire
170 system. In linearized systems, localized modes can only occur around impurities that
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Figure 5. The time evolution of a nonlinear wave described by Equation (16) in its inertial
reference frame. The breather is an oscillatory excitation of finite spatial extent.
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break the translational invariance of the system. However, the existence of breather
excitations in the sine–Gordon and the KdV field theories demonstrates that
nonlinearity can produce oscillatory modes with finite spatial extents. The breather
solutions share the same properties as solitons in that they emerge from breather–

175 breather collisions with their forms intact. The inverse scattering method indicates
that the breather can be considered as a bound state of a soliton–anti-soliton pair.
In this bound state, the separation between the soliton and anti-soliton is oscillating.
However, the one-dimensional quantum sine–Gordon system is also one of the
known exactly integrable quantum systems [18,19] and, in the quantum description,

180 the hierarchy of quantized breather excitations can be described as the bound states
of multiple small-amplitude oscillations [20–22]. The two lowest members of this
hierarchy are the (quantized) excitations of the linearized system and the bound
states of two such linear excitations. The lowest members of the hierarchy of
quantum breathers have been shown to exist in discrete lattice systems.

185 Soliton excitations are not restricted to occur only in exactly integrable one-
dimensional continuous field theories, but have also been shown to occur in certain
discrete one-dimensional lattices with exponential interactions [23]. Although most
one-dimensional nonlinear field theories are not exactly integrable, there is great
physical interest in these equations because many nonlinear problems can be

190 approximated by soliton-bearing nonlinear equations, and also because of the very
important topological implications of solitons (which we only mention in passing). In
phases of condensed matter where symmetry is spontaneously broken, solitons may
act as defects which partially break the topological symmetry of the low-temperature
ordered state [24]. An excellent introduction to the topological theory of defects in

195 ordered media is given by Mermin [25]. In low dimensions, a true transition to a
phase with spontaneously broken symmetry may not exist [26]; however, there could
exist a cross-over to a state with quasi-order. In the low-temperature state, the quasi-
order may be partially broken due to the presence of solitons which have important
ramifications for the physical properties. The solitons of these non-integrable

200 theories may not have the precise mathematical properties of the exactly integrable
systems but, nevertheless, have very similar properties.

4. Recent observations of solitons

Since the discovery of the many unusual and intriguing properties of solitons, soliton
excitations have been found in numerous condensed matter, molecular, biological,

205 and optical systems, of which we shall mention only a few. Already by 1953 Seeger
et al. [27] had shown that the domain walls in ferromagnets are solitonic structures.
The central peaks observed in scattering experiments on quasi-one-dimensional
materials that exhibit structural transitions have been attributed [28] to solitons in
the form of domain walls. The nonlinear current–voltage produced by pinned

210 charge density wave materials has been attributed to solitons [29]. Soliton excitations
have been found in quasi-one-dimensional isotropic Heisenberg magnets [30], in one-
dimensional easy-plane ferromagnets [31] and antiferromagnets [32] and in
Josephson junctions [33]. Solitons have also been found in polyacetylene [34,35]
and biological molecules [36] including DNA [37,38]. Solitons also have
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215 surprising manifestations in optics. McCall and Hahn [39] showed that if the
frequency of an intense coherent pulse of radiation incident on an absorbing medium
is close to the medium’s resonance frequency, the linear theory of absorption
completely breaks down. In particular, the medium absorbs energy from the leading
edge of the pulse, but re-radiates leading to the formation and propagation of a

220 soliton. This results in an anomalously low energy loss of the optical pulse, a
phenomenon known as self-induced transparency. An important technical applica-
tion of solitons is found in optical communications, where the balance between the
nonlinearity in the dielectric constant and dispersion can be used to transmit signals
without degradation by using optical solitons [40,41]. Solitons have also been found

225 in highly anisotropic Bose–Einstein condensates of dilute atomic gasses [42]. Sievers
and Takeno have speculated [43] that the breather excitations may also be quite
widespread throughout nature, perhaps even occurring in the vibrational spectrum
of three-dimensional ionic crystals and �-uranium [44,45]. The observations of Scott
Russell and their full theoretical description by Korteweg and de Vries signaled the

230 birth of the field of nonlinear physics. Nonlinear physics is a subject that is thriving
and will continue to thrive, but perhaps not as a distinct field. This subject may
become integrated in the other branches of physics since interactions form essential
parts of real physical systems and, with increasing frequency, we comprehend that
interactions cannot be treated as small perturbations.
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