

Torus actions on noncommutative algebras

Quantum Groups and Noncommutative Algebraic Geometry Tulane U, New Orleans 10/13/2012

> Martin Lorenz Temple University, Philadelphia

Background: algebraic group actions on noncommutative prime spectra

• **Background**: algebraic group actions on noncommutative prime spectra

Recent work: a new approach to the Stratification Thm for torus actions

Torus actions on noncommutative algebras

Throughout this talk,

k denotes an algebraically closed base field

R is an associative \Bbbk -algebra (with 1)

G is an affine algebraic \Bbbk -group acting rationally on *R*; equivalently, *R* is a $\Bbbk[G]$ -comodule algebra

Torus actions on noncommutative algebras

If $G \cong (\Bbbk^{\times})^d$ is an algebraic torus, then

- $\Bbbk[G] = \Bbbk\Lambda$, the group algebra of $\Lambda = X(G) \cong \mathbb{Z}^d$
- $\mathbb{k}\Lambda$ -comodule algebras are the same as Λ -graded algebras

If $G \cong (\Bbbk^{\times})^d$ is an algebraic torus, then

- $\Bbbk[G] = \Bbbk\Lambda$, the group algebra of $\Lambda = X(G) \cong \mathbb{Z}^d$
- $\mathbb{k}\Lambda$ -comodule algebras are the same as Λ -graded algebras

Thus: a rational G-action on R is equivalent to a \mathbb{Z}^d -grading

$$R = \bigoplus_{\lambda \in \mathbb{Z}^d} R_\lambda \,, \quad R_\lambda R_{\lambda'} \subseteq R_{\lambda + \lambda'}$$

Group actions on noncommutative prime spectra

G-action on $R \rightsquigarrow G$ -actions on {ideals of R}, Spec R, \ldots

 $G \setminus ?$ will denote the orbit sets in question

G-action on $R \rightsquigarrow G$ -actions on {ideals of R}, Spec R, ...

 $G \setminus ?$ will denote the orbit sets in question

Definition The algebra R is called *G*-prime if $R \neq 0$ and the product of any two nonzero *G*-stable (!) ideals of R is nonzero.

A *G*-stable ideal *I* of *R* is called *G*-prime if R/I is *G*-prime

G-Spec $R = \{G$ -prime ideals of $R\}$

G-prime ideals

The "strata" of Spec R are the fibres of γ : Spec $R \rightarrow G$ -Spec R:

$$\operatorname{Spec}_{I} R = \gamma^{-1}(I) = \{ P \in \operatorname{Spec} R \mid P : G = I \}$$

The "strata" of Spec R are the fibres of γ : Spec $R \rightarrow G$ -Spec R:

$$\operatorname{Spec}_{I} R = \gamma^{-1}(I) = \{ P \in \operatorname{Spec} R \mid P : G = I \}$$

$$\sim \rightarrow$$

$$\operatorname{Spec} R = \bigsqcup_{I \in G\text{-}\operatorname{Spec} R} \operatorname{Spec}_I R$$

The "strata" of Spec R are the fibres of γ : Spec $R \rightarrow G$ -Spec R:

$$\operatorname{Spec}_{I} R = \gamma^{-1}(I) = \{ P \in \operatorname{Spec} R \mid P : G = I \}$$

When are there only finitely many strata

Find conditions on R and G that imply finiteness of G-Spec R

When are there only finitely many strata

Find conditions on R and G that imply finiteness of G-Spec R

Heuristic fact: For many algebras R, there is a G-action such that G-Spec R is finite — and interesting!

but a general finiteness criterion still needs to be found

. . .

The special case where R is affine commutative with a torus action is "classical". Here is a slightly more general finiteness criterion:

Theorem: Let R be prime affine PI-algebra / \Bbbk and let G be an algebraic \Bbbk -torus acting rationally on R. Then:

G-Spec R is finite if and only if the G-action on the center $\mathcal{Z}(R)$ is multiplicity free: $\dim_{\Bbbk} \mathcal{Z}(R)_{\lambda} \leq 1$ for all $\lambda \in \Lambda = X(G)$

The answer requires some preparations ...

Torus actions on noncommutative algebras

For simplicity, I assume G to be **connected**; so $\mathbb{k}[G]$ is a domain. In particular,

G-Spec $R = \{G$ -stable primes of $R\}$

This is a commutative domain, a tensor product of two fields.

This is a commutative domain, a tensor product of two fields.

G-actions:

- on $\mathcal{C}(R/I)$ via the given action on R, $\rho \colon G \to \operatorname{Aut}_{\Bbbk\operatorname{-alg}}(R)$
- on $\Bbbk(G)$ by the right and left regular actions $\rho_r \colon (x.f)(y) = f(yx)$ and $\rho_\ell \colon (x.f)(y) = f(x^{-1}y)$

Torus actions on noncommutative algebras

This is a commutative domain, a tensor product of two fields.

Put

Spec^G
$$T_I = \{(\rho \otimes \rho_r)(G) \text{-stable primes of } T_I\}$$

Torus actions on noncommutative algebras

General Stratification Theorem: Given $I \in G$ -Spec R, there is a bijection

$$c: \operatorname{Spec}_{I} R \longrightarrow \operatorname{Spec}^{G} T_{I}$$

having the following properties:

- (a) G-equivariance: $c(g.P) = (\mathrm{Id} \otimes \rho_{\ell})(g)(c(P));$
- (b) inclusions: $P \subseteq P' \iff c(P) \subseteq c(P')$;
- (c) hearts: $\mathcal{C}(T_I/c(P)) \cong \mathcal{C}(R/P \otimes \Bbbk(G))$ as $\Bbbk(G)$ -fields;
- (d) "rationality": $C(R/P) = \Bbbk \iff T_I/c(P) = \Bbbk(G)$.

... but what is

Torus actions on noncommutative algebras

Stratification Theorem for torus actions

Let G be an arbitrary affine algebraic \Bbbk -group for now. For a given $I \in G$ -Spec R, put

$$Z_I = \{ c \in \mathcal{C}(R/I) \mid \dim_{\Bbbk} \langle G.c \rangle_{\Bbbk} < \infty \}$$

Let G be an arbitrary affine algebraic \Bbbk -group for now. For a given $I \in G$ -Spec R, put

$$Z_I = \{ c \in \mathcal{C}(R/I) \mid \dim_{\Bbbk} \langle G.c \rangle_{\Bbbk} < \infty \}$$

Properties:

- Z_I is a *G*-stable \Bbbk -subalgebra of C(R/I)
- Z_I contains the field of *G*-invariants, $\mathcal{C}(R/I)^G$
- the G-action on Z_I is rational


```
Torus Stratification Theorem: Let G be an algebraic torus and let I \in G-Spec R. Then:
```

(a) There is an isomorphism of algebras

 $Z_I \cong \mathcal{C}(R/I)^G \Gamma_I$,

the group algebra of the lattice $\Gamma_I = X(G/\operatorname{Ker}_G(Z_I))$ over the field $\mathcal{C}(R/I)^G$.

(b) There is a *G*-equivariant order isomorphism

$$\gamma \colon \operatorname{Spec}_I R \xrightarrow{\sim} \operatorname{Spec}(Z_I)$$
.

Concluding remarks

• The original result, due to Goodearl & Letzter and Goodearl & Stafford (\sim 2000), is for noetherian *R*. Now *R* can be arbitrary.

- The original result, due to Goodearl & Letzter and Goodearl & Stafford (\sim 2000), is for noetherian *R*. Now *R* can be arbitrary.
- The definition of the algebra Z_I is easily stated in terms of the given *G*-action on *R*, for any *G*.

- The original result, due to Goodearl & Letzter and Goodearl & Stafford (\sim 2000), is for noetherian *R*. Now *R* can be arbitrary.
- The definition of the algebra Z_I is easily stated in terms of the given *G*-action on *R*, for any *G*.
- The group algebra (Laurent polynomial algebra) structure of Z_I arises naturally from the fact that G is a torus.

- The original result, due to Goodearl & Letzter and Goodearl & Stafford (\sim 2000), is for noetherian *R*. Now *R* can be arbitrary.
- The definition of the algebra Z_I is easily stated in terms of the given *G*-action on *R*, for any *G*.
- The group algebra (Laurent polynomial algebra) structure of Z_I arises naturally from the fact that G is a torus.
- The proof uses the "General Stratification Theorem".

- [1] M.L., "Group actions and rational ideals", Algebra and Number Theory 2 (2008), 467-499
- [2] ____, "Algebraic group actions on noncommutative spectra", Transformation Groups **14** (2009) 649-675
- [3] ____, *"Rational group actions on affine PI-algebras"*, Glasgow Math. J. (to appear)
- [4] ____, "On the stratification of noncommutative prime spectra", Proc. AMS (to appear)

Papers & this talk available at http://math.temple.edu/~lorenz/

