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ABSTRACT. We present a new proof of a theorem of Schur’s from 1905 ohetémg the least common multiple
of the orders of all finite groups of complexx n-matrices whose elements have traces in the fletd rational
numbers. The basic method of proof goes back to Minkowskipaadeeds by reduction to the case of finite fields.
For the most part, we work over an arbitrary number field mathanQ. The first half of the article is expository
and is intended to be accessible to graduate students aadcadl undergraduates. It gives a self-contained
treatment, following Schur, over the field of rational numshe

1. Introduction

1.1. How large can a finite group of complexx n-matrices be if: is fixed? Put differently: ifG is
a finite collection of invertible: x n-matrices oveC such that the product of any two matricesdragain
belongs tag, is there a bound on the possible cardinglity, usually called therder of G? Without further
restrictions the answer to this question is of course negaideed, the complex numbers contain all roots of
unity; so there are arbitrarily large finite groups insfefe Thinking of complex numbers as scalar matrices,
we also obtain arbitrarily large finite groupsmofx n-matrices ovef.

The situation changes when certain arithmetic conditioesraposed on the matrix group. When
all matrices inG have entries in the fiel@ rational numbers, Minkowski33] has shown that the order of
G divides some explicit, and optimal, constavt(n) depending only on the matrix size Later, Schur
[39] improved on this result by showing that Minkowski’s bouffi(n) still works if only the traces of all
matrices inG are required to belong 0.

1.2. The first four sections of this article present full proofsio¢ theorems of Schur and Minkowski
that depend on very few prerequisites. These sectionsif@lchur’'s approach via character theory and have
been written with a readership of beginning graduate andrachd undergraduate students in mind. Provided
the reader is willing to accept one simple fact concernimygrepresentations (Fact 2 in Section 3.2 below),
the proofs will be completely understandable with only aimehtary knowledge of linear algebra, group
theory (symmetric groups, Sylow’s theorem), and some algelmumber theory (minimal polynomials,
Galois groups of cyclotomic fields). The requisite backgubmaterial will be reviewed in Section 3.
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The material in Section 5 is new. We show that Minkowski'gyoral approach used ir8f] in fact
also yields Schur’s theoren89. Minkowski's method is conceptually very simple, and iticikdy and
elegantly explains why some bound on the oridgmust exist, even for arbitrary algebraic number fields,
that is, finite extensions d§. The method proceeds by reduction modulo suitably chosemegrand then
using information about the orders of certain classicadingroups over finite fields. In fact, the general
linear group alone almost suffices; only dealing with 2hgart of |G| using this strategy requires additional
information. Since we work over algebraic number fields,tarlmre mathematical background is assumed
in this section.

As of this writing, Schur’s theorem first appeared in prinagtky a century ago and Minkowski’s goes
even further back. In the final section of this article, wd siirvey some recent related work of Collins, Feit
and Weisfeiler on finite groups of matrices, in particulatt®so-called Jordan bound. We will also mention
two mysterious coincidences concerning the Minkowski neraB/(n), one proven but unexplained, the
other merely based on experimental evidence as of now.

1.3. Minkowski [33] proved his remarkable theorem in the course of his invastig of quadratic forms.
Stated in group theoretical terms, the theorem reads asv®ll

THEOREM 1 (Minkowski 1887). The least common multiple of the orders of all finite groups &fn-
matrices oveR is given by

(1) M(n) = [[plrr ) )t Lo [+

Here, | . | denotes the greatest integer less than or equalandp runs over all primes. Note that if
p > n+ 1 then the corresponding factor in the product equaed can be omitted. Therefore, (1) is actually
a finite product. The first few values 8f (n) are:

M) =2"=2, M(2)=2°T'3" =24, M(3) =213 =48, M(4) = 2**1 325! = 5760 .

1.4. For a positive integem and a prime, letm,, denote the-part ofm, that is, the largest power pf

dividing m. Thus,M(n), = pLﬁJ’LLan”J+[P2<Z?1>J " This number can be written in a more compact

form. Indeed, the-partofm! =1-2-...-mis given by
2) (m1), = pl3 13+
To see this, putn’ = {%J and note thatn! = p- (2p) - ... - (m'p) - (factors not divisible by) . Therefore,

(m!), = pm/(m’!)p and (2) follows by induction. Using (2) we can write

@3) M(n), = pli*] (L%J!)p .

1.5. The notationM (n), in the variant\M,,, was introduced by Schur ir39] to honor Minkowski who
had originally denoted the same numberﬂy Relaxing the condition in Theorem 1 that all matrix entries
be rational and replacing it with the weaker requirement ¢mdy the matrix traces belong %@, Schur was
able to prove that Minkowski's bount/ (n) still works:

THEOREM 2 (Schur 1905).If G is any finite group of. x n-matrices ovelC such thattrace(g) € Q
holds for allg € G then the order o dividesM (n).

Schur’s theorem covers a considerably larger class of grthigm Theorem 1. In30)], the following
example of a group covered by Theorem 2 but not Theorem 1 é&ngiv
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ExampLE 3. Consider the matriceg = ({ ') andh = ({ %), wherei = /=1 € C. Then
g*> = h? = —laxs andgh = (9) = —hg. ThusG = {149, +g,+h, +gh} is a group of complex
2 x 2-matrices of ordes; it is isomorphic to the so-called quaternion gro@p. Note that the traces of all
elements oy are rational — they are eithéror £2 — butG certainly does not consist of matrices oder
In fact, there does not even exist an invertible com@ex 2-matrix a such that the matrices = aga~!
andy = aha~! both have entries in the fiel of real numbers. To see this, note thaandy both would
have determinant and trace), asg andh do. A direct calculation shows that the product matrix xy
then satisfies 22 + 7122 + y122 = —212912 trace(z), where. 15 indicates the 1, 2)-entry of the matrix in
question. Howevetrace(z) = trace(gh) = 0. Hence, ifx andy are matrices oveR then all terms on the
left will be zero. But then = det(x) = 11222 = —x112 which is impossible.

We remark in passing that, for any “irreducible” finite groipf complexn x n-matrices, a hecessary
and sufficient condition for the existence of an invertildenplexn x n-matrixa such thatiga=" is real for
all g € Gisthat

The sum on the left is called th&obenius-Schur indicatoof G; see, e.g., Isaac2(, Chapter 4]. The group
G = Qg in the example above has Frobenius-Schur indicator

1.6. The proof of Theorems 1 and 2 to be given in Section 4 beloweg®ds by first exhibiting suf-
ficiently large groups of rational (in fact, integer) magrscshowing that the least common multiple of the
orders of all finite groups of. x n-matrices ovefQ must be at least equal t/ (n). Thereafter, we may
concentrate on Theorem 2 which in particular implies thaté&ast common multiple in Theorem 1 does not
exceedM (n). Apart from updating terminology and notation to currerages and adding more generous
details to the exposition, we have followed Schur’s orieggproach in 39| quite closely. For a proof of
Schur’s theorem using slightly more sophisticated toasifrepresentation theory, see Isad& Theorem
14.19]. A proof of Minkowski’'s Theorem 1 is also presentedBimrnside B, pp. 479-484] and in Bourbaki
[4, chap. 111§7, Exerc. 5-8]. Stronger results can be found in Feif find in Serre41, pp. 518-519].

1.7. This article is dedicated to our friend and colleague DorsfPas. Don’s contributions to group
theory and ring theory in general and his expository mastegs B5], [36] in particular have profoundly
influenced our own work. In the course of various collabaraiwith Don, we have both benefitted from his
deep insights and his generosity in sharing ideas.

NoTATIONS. Throughout,GL,,(R) will denote the group of all invertible x n-matrices over the
commutative ringR. Recall that a matrix oveR is invertible if and only if its determinant is an invertible
element ofR.

2. Large groups of integer matrices

The principal goal of this section is to construct certaiougs ofn x n-matrices ove# such that the
least common multiple of their orders equals the Minkowskifd M (n) in (1). This will then allow us to
give a reformulation of the core of Theorem 2.

2.1. Construction of groups. The main building blocks of the construction will be the sysatric
groupss,. for variousr. Recall thatS, consists of all permutations éf., . .., r} and has order!.

PROPOSITION4. Leta, m andn be positive integers withm < n. ThenGL,,(Z) has a subgroug of
order|G| = (m+1)!%a!.
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PrROOF. If we can realiz&j insideGL,,,(Z) then we can viewj as a subgroup d&L,,(Z) via

GLum(2)

1%

G C GLan(2)

Therefore, we may assume that= am. Think of the rows of any: x n-matrix as partitioned inta blocks
of m adjacent rows, and similarly for the columns. Now considematrices inGL,,(Z) that have exactly
onem x m-identity matrix1,, «, in each block of rows and each block of columns asalsewhere; these
are special permutation matrices. In fact, the collectibalidhese matrices forms a subgrollpC GL,,(Z)
that is isomorphic to the symmetric groSp :

1m><m

1m><m

Sy =1l = C GL,(2) .

1m><m

Next, we turn to the symmetric group),, 1. This group acts on the latticZ™ ! by permuting its canon-
ical basise; = (1,0,...,0),...,emy1 = (0,...,0,1) viao(e;) = e,(;). Note that this action maps the
following sublattice to itself:

A ={(z1,- -, 2m11) €2 =0} = 7™
(The notationA,,, comes from the theory of root systems; @).] Thus, fixing some&Z-basis ofA,,,, each
permutations € S,,+1 yields a matrixc € GL,,(Z). It is easy to see that the map— & is an injec-
tive group homomorphisr§,,,+1 — GL,,(Z). Stringing eachu-tuple (o7, ...,0,) along the diagonal in
GL,(Z) we obtain a subgroup C GL,,(Z) that is isomorphic t&7, , ; :

01

g
= Sy X X S &A= ’ C GL(Z).

a factors

Oq

The subgroupl of GL,,(Z) constructed earlier has only the identity matrix in commativA. Moreover,
conjugating a matrix i\ with a matrix fromll simply permutes th&;-blocks along the diagonal. Therefore,
definingg to be the subgroup d&L,,(Z) that is generated b andA, we obtain

G = 1A} = (m + 1)1 al,

as desired. O

Now fix a primep < n + 1. Takingm = p — 1 anda = L%J in Proposition 4 we obtain a subgrodp

of GL,(Z) of orderp!® a!; so|G|, = p*(a!),. In view of (3), this says thdtj|, = M (n),. Lettingp range
over all primes< n + 1, we have exhibited a collection of subgroupsiif,,(Z) such that the least common
multiple of their orders i\ (n) .
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2.2. Reformulation of Theorem 2. LetG C GL,(C) be as in Theorem 2. Our goal is to show that, for
all primesp, thep-part|G|, dividesM (n), = p® (a!), with a = {ﬁJ as in (3). Now Sylow’s Theorem
tells us thalg has subgroups of ordég|,,, the so-called Sylow-subgroups of. Replacingg by one of its

Sylowp-subgroups, the issue becomes to show|thiadividesp®a! . Therefore, in order to prove Theorem 2,
and thereby complete the proof of Theorem 1, it suffices tabdish the following proposition.

PROPOSITIONS. LetG be finite subgroup of:L,,(C) whose order is a-power for some prime and

such thattrace(g) € Q holds for allg € G. Then|g| dividesp®al with a = L%J

3. Tools for the proof

The proof of Proposition 5 will depend on three ingredieatiemma to narrow down the possible trace
values, some basic facts on characters of group represerstasind an observation concerning the familiar
Vandermonde matrix. We will discuss each of these topicarim.t

3.1. Traces. This section uses a small amount of algebraic number th&twebook R3] by Janusz is
a good background reference.

Besides the usual matrix traces, we will use a notion of ttheeis associated with field extensions.
Specifically, letK/F be a finite Galois extension with Galois grolip= Gal(K/F). Then the trace
Trg/p: K — Fis defined byTry p(a) = 3 (o) fora € K. If 2™ + cx™ 1t + ... is the min-
imal polynomial ofa. over F' then

r
o

(4) Trg r(a) = oy

This follows from the fact that the minimal polynomial efis equal to] [\, (z — «;), where{«; } 1 are the
distinct Galois conjugateg(«) with v € T'. We will only be concerned with the special case where- Q
andK = Q(e2™/?") with p prime. The Galois group d(e2"*/?")/Q is isomorphic to the group of units
(Z/p"Z)" of the ringZ /p"Z; its order isp(p”) = p" 1 (p — 1).

LEMMA 6. Letg € GL,,(C) be a matrix of finite order. Thejtrace(g)| < n andtrace(g) = n holds
only forg = 1,,«x,. If the order ofg is a power ofp andtrace(g) € Q thentrace(g) must be one of the

integers{n,n —p,n —2p,...,n —ap}, wherea = LﬁJ .

PROOF By hypothesisg? = 1,,, for some positive integey. Leteq,. .., e, denote the eigenvalues
of g; they are all powers of = €27/, Hencejtrace(g) = Y, ¢; belongs to the subring[¢] C C. By the
triangle inequality| trace(g)| < ), |e;| = n and< is equality if and only if all:; are the same, that ig,is
a scalar matrix. In particulatrace(g) = n holds only forg = 1,,x,.

Now assume that = p" andtrace(g) € Q. Thentrace(g) is actually an integer; se@3, Section 1.2].
Letp = (¢ — 1) denote the ideal oZ[(] that is generated by the element 1. So¢ = 1 mod p, and
hence alls; = 1 mod p andtrace(g) = n mod p. Thereforetrace(g) —n € pNZ = (p); see R3,
Theorem 1.10.1] for the last equality. Since we have alrestywn thatirace(g) < n, we conclude that

trace(g) = n — pt for some non-negative integerlt remains to show that< z% or, equivalently,
n

p—1°

trace(g) > —

To this end, consider the Galois extens@(q)/Q and its tracelrq(¢),/q. The minimal polynomial oveq of
a root of unity of ordep® > 1 is given byz?" =1 4 z" ' (=2) 4 4 1 ([23 Theorem 1.10.1] again).
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Therefore, equation (4) yields

o) ife =1,
Tro()/qlei) = ¢ —p" ' if e; has ordep,
0 otherwise.
Putng = #{i | &; = 1} andn; = #{i | £; has ordep}; s00 < n; < n. Using the fact thatrace(g) € Q
we obtain

p(p") trace(g) = Tro(¢)q(trace(g)) = Y Troe)/a(ei) = (@ o —p" 'na .

Hencetrace(g) = no — p”jl > —p—fl, as desired. O

3.2. Characters. A complex representatiaof a groupg is a homomorphism: G — GL(V') for some
C-vector spacéd’. If n = dim¢ V then we may identiffGL(V") with GL,,(C); the integem is called the
degreeof the representation Thecharactery = x, of p is the complex-valued function anthat is given

by x(g) = trace(p(g)) forg € G.

Fact1The sumd_ _; x(g) is always an integer that is divisible bg|.

To see this, consider the linear operatpre Endc (V) = M, (C) that is defined by, = |71\ >geg P(9)-
Note thatp(g)e, = e, holds for allg € G, because multiplication witp(g) simply permutes the summands
of e,. Henceg¢, is an idempotent operatoe? = ¢,. Therefore, the trace af, is equal to the rank of ;:
trace(e,) = dimg e, (V). On the other handrace(e,) = |71\ > geg trace(p(g)) = |71\ >_geg X(g). This
proves Fact 1. We remark that Fact 1 is a special case of thallmiorthogonality relationof characters.

Fact 2 The product of any two characters @fis again a character of;. In particular, all
powersy® (s > 0) of a charactery are also characters of.

Here, theD™ powery" is the constant function with value it is the character of the so-called trivial repre-
sentationg — C* = GL1(C) sending every; € G to 1. In order to show that the product of two characters,
X, andx,, is itself a character, one needs to construct a complexseptation off whose character is
X, - Xp- This is achieved by the so-called tensor proguet o’ of the representationsandy’, a complex
representation of degree equatlieg p - deg p’ for whose detailed construction the reader is referredstads
[20, Chapter 4] or any other text on group representation thedore generally, tensor products of repre-
sentations can be defined falopf algebrasthey form an important aspect of the current investigatibn
quantum groups

3.3. Vandermonde matrix. Given a collectionz, . .., z, of elements in some commutative rirg
(later we will takeR = Z), form the familiar Vandermonde matrix
1 =z zg A
1 oz 22 ... 2%
V =
1 oz, 22 zy

We will exhibit a matrixE over R so that the matrix produdt - E is diagonal:

(5) V . E = diag H 20 — Zs, H 21— Zgyeon, H Zgq — Zs

0<s<a 0<s<a 0<s<a
s#£0 s#£1 s#a
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Tothisend, let, = es(z1,.. ., z,) denote the™ elementary symmetric function in the commuting variables
x1,-..,2Zq . These functions can be defined by
a a

(6) H(x — ;) = ZIS(_l)aiseafs )

i=1 s=0
wherez is an additional commuting variable. Explicitly, = >, [[;c; =i, wherel runs over all subsets
I C{1,...,a} with |I| = s. Specializinge to z; and(x1, ..., z,) 10 (20, ..., 2, - - ., 24), Wherez; signals
thatz; has been deleted from the list, and defining

E = ((_1)1175@@_8(207 ey By Za))s,tfo,
equation (6) becomes the desired equation (5).

4. Schur’s proof of Theorems 1 and 2

It remains to prove Proposition 5. So fix a primand letG be finite subgroup of:L,,(C) whose order
|G| is a power ofp. We assume thatace(g) € Q holds for allg € G. Since the order of eaghdivides|G],
Lemma 6 implies that the traceésace(g) can only take the values

zz=n—pt with0<t<a= {ﬁJ

Putm, = #{g € G | trace(g) = z}; somy = 1 by Lemma 6. Proposition 5 is the case= 0 of the
following

CLaM. Forall0 <t < qa, the ordellG| divides the productu;p® H s —t.
0<s<a
s#£t
To prove this, note that the inclusighC GL,,(C) is a complex representation fwith charactery(g) =
trace(g). Therefore, it follows from Facts 1 and 2 above that, for each-negative integes, the sum
> 4eg trace(g)® is an integer that is divisible big|. In other wordsy "}, m;z; =0 mod |G| or, in matrix
form,

(7) (mo,...,mgq) -V =(0,...,0) mod |gG|,

whereV = (Zts)t,szo,...,a is the Vandermonde matrix, as§B.3. Multiplying both sides of equation (7) with
the matrixF constructed ir§3.3, we deduce from equation (5) that

me H 2zt —2s =0 mod |G|
0<s<a
st
holds for all0 < t < a. Sincez; — z; = p(s — t), this is exactly what the claim states. This completes the
proof of Proposition 5, and hence Theorems 1 and 2 are prevetih

REMARK. It has been pointed out to us by Serre that the Claim abovbeatated more generally as
follows. Letg be a finite subgroup ofiL,,(C). PutX = {trace(g) | g € G} and, for eaclkf € X, let
me = #{g € G | trace(g) = £}. Note thatX C Z[¢] for some root of unity, € C so that the eigenvalues
of eachg € G are powers of ; no a priori hypothesis on trace values is necessary. Thesadrgument, with
the obvious notational changes, proves the following:

For eaclt € X, the producin, HneX\{g}(f —n) is divisible by|g|.
The matrice$” andE will now be matrices oveZ [¢] and divisibility is to be understood if[¢]. However, X

is stable under the Galois grotfal(Q(¢)/Q), because each Galois automorphism sgrtdsome powec?,
and hencerace(g) is sent totrace(g®) € X. Thus, if is rational then so is the produﬁnex\{g} & —-mn),

and hence this product is actually an integer &iddividesm HneX\{g}(f —n) in Z. This applies in
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particular tof = n € X, with m¢ = 1. Therefore|G| always divided [, v\ (,,,(n —n) in Z. Now, if |G| is
a power ofp andtrace(g) € Q holds for allg € G then Lemma 6 implies thzﬁ[nex\{n} (n —n) is a divisor
of +p“a!; so|G| dividesp®a!, as desired.

5. Minkowski’s reduction method

Minkowski’s original proof of Theorem 1 is quite differemoin Schur’s. The essential tool are reduc-
tion homomorphisms to the general linear group over ceffiaite fields. The reduction method applies
to algebraic number field&’, that is, finite extensions @, and very quickly yields rough bounds for the
orders of all finite subgroup§ C GL, (K); see Proposition 11 below. In fact, subgrogps GL,,(C)
satisfying onlytrace(g) € K for all g € G can also be treated by this strategy due to the fact thatrlinea
groups over finite fields can be realized over the subfield ig¢e@ by the traces; see Lemma 8. A sharp
bound for the2’-part of |G| can be easily deduced in this way from the well-known ordé¢hefgeneral linear
group over a finite field together with some elementary nuntfbeoretic observations; see Proposition 15.
The2-part of |G| requires additional information concerning certain dlzsgyroups associated to hermitian
or skew-hermitian forms. This will be explained§f 5.5 and 5.6 below.

As usual, the field withy elements will be denoted Hy,. We will also occasionally write the-part of
an integerm asm,, = p’»(™), andm,, will denote they’-part ofm; som, = m/m,,.

5.1. The general linear group over finite fields.It is well-known and easy to see th&@f.,,(F,) has
order[ ]}~ (q — ¢%); cf., e.g., Rotmand8, Theorem 8.5]. Thus, if = p/ then

(8) | GLn(Fg)lpr = H(ql -1).
i=1
LEMMA 7. Let/ be an odd prime. There are infinitely many prinpesuch that
| GLy (Fys)e — p(tve(H)) /7] (In/7]),
holds for all positive integers and f, wherer = (Z—_—lf)

PROOF We use the fact that, for odd primésthe group of unit§Z/¢°7)* of the ringZ /¢°Z is cyclic
of ordery(¢*) = ¢*~1(¢ — 1). Any integer whose residue class modétogeneratesZ /¢/*Z)* will also
generate the units modulo all powe¥s see [L9, proof of Theorem 2 on p. 43]. Moreover, by Dirichlet’'s
theorem on primes in arithmetic progression (e4p, p. 61]), the residue class modufbof any generator
of (2/¢?7)* contains infinitely many primeg. Let p be one of these primes. Therhas orderp(¢%) in
(2/657)%; sop' =1 mod ¢4 if and only if i is divisible by (¢*). In other words/ dividesp’ — 1 if and
only if £ — 1 divides: and, in this case,

(' —1) =t (ﬁ)

Now putq = pf. Then/ dividesq’ — 1 if and only if 7 dividesi and, in this caseq’ — 1), = £ f; (i/7)e.
Forl <i < n, this appliesta = 7,27,..., a7, wherea = [n/7]. Thus,| GL,, (F,7)|e = [T/ (¢" —1)¢ =
(€ fo)* (a!)¢, which proves the lemma. O

, .

We remark that, forf = 1, the expressiod!+v»(D)Ln/7] (|n/7]1), in Lemma 7 is identical with the
¢-part of the Minkowski bound/ (n); see equation (3). Thus, for an odd prife

9) | GLn (Fp)le = M(n)e

holds for infinitely many primep. Lemma 7 fails for the primé = 2, because the linear group is too big.
For example, for all odd primes | GL2(F,)|2 = (p — 1)2(p* — 1)2 is divisible by16 while M (2), = 8.
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LEMMA 8. LetG be a finite subgroup d&L,, (F,), whereq = p/. Assume that does not dividég| and
thatp > n. If all g € G satisfytrace(g) € F for some subfield” C [F, theng is conjugate to a subgroup of
GL,(F).

PROOF. Letk = F39 denote an algebraic closure Bfwith F, C k, and leto denote the canonical
topological generator ofal(k/F) = Z. Theno acts onGL, (k) by (9i3)0 o = (ggj)nm. By our
hypothesis on traces, the m@p— GL,,(k), g — ¢, is ak-representations @ having the same character
as the inclusioy — GL,, (k). Since both representations are semisimple, by Maschhe®em, they are
isomorphic. (The proof off, § 12, Proposition 3] works in characteristic> n.) Thus, there exists a matrix
u € GL, (k) such thatugu=* = ¢° holds for allg € G. By Lang’s theorem28], we can writeu = v7v~*
for somev € GL, (k). Thus, eachv—!gv is fixed byo, and hence it belongs @L,,(F). By the Noether-
Deuring Theorem (e.g., Curtis-ReindrZ] p. 139]), we may replace by a matrix inGL,,(F,), proving the
lemma. O

REMARKS. (&) Lang’s theorem is a much more general result than whzetisally needed for the proof
of Lemma 8; see, e.g., Boréd,[Corollary 16.4]. Indeed, we only invoke the theorem for &hgeebraic group
GL,, and, inthis case, itis a special case of Speiser’s versibiilloért's Theorem 90: the Galois cohomology
setH!(F,GL,,) is trivial for every fieldF’; cf. Serre §2, Proposition X.3] or Knus et. al2p, Remark 29.3].
For a finite fieldF, triviality of H'(F, GL,,) amounts to the desired fact that everg GL, (F39) can be
written asu = v?v~!, whereos is the Frobenius generator Ghl(F29/F); see R6, Exercise 2 on p. 442].

(b) It follows from (a) thatl ! (F,, PGL,,) is trivial as well: everyl/ € PGL,, (F2'%) = GL,, (F29) /(F2'9)*

can be written a§/ = VoV~ for someV € PGLn([an'g). Moreover, triviality of H! (F,, PGL,,) is equiv-
alent to Wedderburn’s commutativity theorem for finite digh rings; see42, Proposition X.8] or 26,
p. 396]. For an alternative proof of a version of Lemma 8 basetlVedderburn’s commutativity theorem,
see Isaac20, Theorem 9.14]. Incidentally, Wedderburn’s articid]appeared in 1905, as did Schur’s, and
Speiser’s generalization of Hilbert's Theorem 90 appeared®19 |4, Satz 1]. None of this was available
to Minkowski when B3] was written.

5.2. The reduction map. Throughout this sectiorfy will denote an algebraic number field agadwill
be a finite subgroup d&L,, (K'). Furthermore() = O will denote the ring of algebraic integers .

PutL = > g9 -O" C K" this is ag-stable finitely generate@-submodule ofK™. If O is a
principal ideal domain (or, put differentlys” has class numbayi) then the theory of modules over PIDs tells
us thatL is isomorphic ta0"; see, e.g., JacobsoR1, Section 3.8]. Therefore:

If O = Ok is a PID theng is conjugate inGL,,(K) to a subgroup ozL,,(O).

For K = Q, for example, this says that every finite subgrougaf,, (Q) can be conjugated intGL,,(Z).
This explains why it was enough to look at integer matricéisaiathan matrices ovéy in Section 2.

In general O is a Dedekind domain and the foregoing applies “locally’ éwery prime ideap of O,
the localizatior®, is a PID; see JacobsoRd, Section 10.2]. Consequently, as above, we may conclude tha
G is conjugate inGL,, (K') to a subgroup of:L,, (O, ), and hence we may assume tgat GL, (O, ) after
replacingg by a conjugate. In fact, except for finitely many primegfthe groupg is actually contained
in GL,,(O,) at the outset: ifla € O is a common denominator for all matrix entries of all elensenit
the originalG thenG C GL,(O[1/a]); so any primep not containingz will do. Now letp # 0 and put
(p) = pNZ. ThenO/p is a finite field of characteristis. The number of elements @¥/p is often called
theabsoluteor counting normof p; it will be denoted byV (p). Thus,

O/p 2 Fng and N(p) =p/,

wheref = f(p/Q) is the relative degree gf overQ. Reduction of all matrix entries modulo the maximal
idealpO, of O, gives a homomorphism

(20) GL,(Op) — GLA(Far(p))
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becaus®, /pO, = O/p. The following lemma is well-known. Only the first assertioill be needed later;
the second is included for its own sake. Recall that, sti¢és a local PID, its non-zero ideals are exactly the
powers of the maximal ideal®,. Theramification indexof p overQ is the powet such thapO, = p°O,.

LEMMA 9. The kernel of the reduction homomorphigh0) has at mosp-torsion. In fact, any torsion
elemeny in the kernel satisfieg? = 1,,,, for somep’ < ep/(p—1).

PrROOF For eachy € GL,(0O,), defined(g) = sup{m | g — loxn € My(p™Oy)}; s0d(g) = oo
if and only if g = 1,,x,, andd(g) > 0 if and only if g belongs to the kernel of (10). Now assume that
0 < d = d(g) < oo and writeg = 1,x, + 7?h, wherer is a generator of the ideal®, andh €
M, (Op) \ My, (pOy). Theng™ = 1o, + 7(rh + 5) with s = S0, (D)a%-Dhi € M, (pO,). If
(r,p) = 1thenrh + s ¢ M, (pO,) and sog” # 1,x,. This shows that the kernel of (10) has at most
p-torsion.

We claim thatany € GL,,(O,) with d = d(g) > 0 satisfiesi(¢”) > min{e+d, pd}, andd(g?) = e+d
if pd > e + d. Indeed, we may assume that< co. Writing g = 1,«, + 7%h be as above, we obtain
G = lpwn +7PhP +t with t = Zf;ll (P)m%n’. Sincep divides all binomial coefficient§?) occurring in
t, we havet € M, (peT20,) \ M, (p¢T4+10,). The claim follows from this. We conclude in particular that
gP # lyxnif oo > (p—1)d > e.

Now assume thag € GL,(O,) is a torsion-element with < d(g) < oc. Theng?' = 1,y for
some positive integei. If ¢ is chosen minimal then our observations in the previousgraph imply that
e>(p—1)d(g? ") > (p—1)pi~1d(g). Hencep’ < ep/(p — 1) which proves our second assertion. ]

The above proof also shows thatif(p — 1) > e then there is no non-trivial torsion in the kernel of the
homomorphisnGL, (0,) — GL, (O/p™) that is defined by reduction of all matrix entries modp1e0O, .

ExampLE 10. LetK = Q. Thenp = (p) ande = 1. Thus, in Lemma 9, we must have= 0 when
p is an odd prime, and < 1 whenp = 2. In other words, the kernel of the reduction nﬁpn(z(p)) —
GL,(F,) is torsion-free for odgh. Forp = 2, the only non-trivial torsion possible is ord2r The kernel of
GL,(Z(2)) — GLn(Z/42) is torsion-free.

The first assertion of Lemma 9 implies that thepart |G|, of the order ofG divides| GLy, (F ar(p))|p-
In view of equation (8), this yields the following propositi.

ProOPOSITION11. LetG be a finite subgroup d&L,, (K), whereK is an algebraic number field. Then,
for each non-zero primp of O lying overp € Z, |G|, divides[;_, (N (p)* — 1).

Applying Proposition 11 with any two choices pflying over different rational primes yields a bound
for the order ofj. Moreover, Proposition 11 comes close to establishing tik&vski boundM (n) for the
field of rational numbers:

ExAMPLE 12. For a finite subgroug C GL,,(Q) and a given primé, Proposition 11 implies that the
¢-part|G|, of the order ofG divides| GL,,(IF,)|., wherep is any prime other thad. Furthermore, i # 2
then| GL,,(F,)|. = M (n), for infinitely many primeg, by (9). Thus, we have shown (again) thagifs a
finite subgroup ofGL,,(Q) then|G|, dividesM (n), for all primes¢ # 2. In order to extend this to the prime
¢ = 2, Minkowski uses additional facts about quadratic formssTill be explained below.

5.3. The Schur bound. Fix an algebraic number fiel#'. We will describe certain constant§n, K),
introduced by Schur in39], for the purpose of extending Theorem 2 to general algebramber fields.
Thus,S(n, Q) will be identical toM (n). Like M (n), the constan§(n, K) will be defined as a product of
(-factors for all prime numberg and almost alf-factors will bel. Throughout, we put

(m:egm/m eC.
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For a given prime, the chainKk NQ(¢) C --- C KN Q({m) C K NQ(¢m+1) C ... of subfields of
K must stabilize, sinc& is finite overQ. Thus we may define

(12) m(K,0) =min{m > 1| KNQ(¢m) =K NQ({pm+1)=...}.

Now put

(12) HEK, L) = [Q(Gmaco) : KNR(Cpmuxn)] -

and define

(13) S(n, K) = 2Lt | T gm0 Lt I Loty )+ i
4

— oLt ) 1;[em<“>h<z?,ed (|25, -

Here,/ runs over all rational primes, includiry and the second equality follows from equation (2). Since
t(K,0)[K : Q] > £ — 1, only finitely many? will satisfy ¢(K, ¢) < n and so almost all-factors are trivial.

EXAMPLE 13. LetK = Q(() for some positive integét. SinceQ(¢x) N Q(¢:) = Q((x,¢)), we have
m(K,¢) = max{1,v,(k)}. If £ does not divide: thent¢(K,¢) = ¢ — 1; otherwiset(K,¢) = 1. ForK = Q
in particular, we obtaimn(Q, ¢) = 1 and¢(Q,¢) = ¢ — 1 for all £. Thus, equation (13) reduces to (1) and so
5(n,Q) = M(n).

In [39], Schur proved the following generalization of Theorem ihgs larger dose of character theory
than what was needed in Section 4.

THEOREM 14 (Schur 1905) Let G be a finite subgroup d&L,,(C) such that the traces of all elements
of G belong to some fixed algebraic number fi&ld Then|G| dividesS(n, K).

An alternative description of the constarfin, K) is as follows. Letu,~ denote the group of all
£-power complex roots of unity. Thel N Q(pe~) = K NQ(¢pmx.0)-

e If Zis odd then eaclix N Q({,~)/Q is a subextension d§({,~)/Q which is cyclic with Galois group
isomorphic to(Z/¢Z)* = 7 /im~'7Z x Z/(¢ — 1)Z. Also, K N Q(¢,) is the fixed subfield of< N Q(¢ym )

under the grou/¢™ 2. Thus,[K NQ(Ce) : Q] = [KNQ(¢) : QK NQ(¢e) : Qe and[K NQ(¢) : Q]
is a divisor of¢ — 1. Hence, for odd prime§

(14) m(K,€) =1+ ve([K NQ(pe=) = Q)
t(K, €) = (&) : K N RG] = F=rmiatm=ra -

e For the prime/ = 2, the extensio((2=)/Q has Galois grougz /2mzZ)* = 7/2™ 27 x 7/2Z
(m > 2). The factorz/27 is generated by complex conjugation. When> 2, the fieldQ({2=) has
exactly three subfields that are not containe®id,~1): besides((2m ), there areQ(om + (i) and
Q(Cam —Com ). If (K, 2) = 1, which certainly holds whem(K, 2) = 1 orm(K, 2) = 2, thenK NQ(pa~) =
Q(Comx2) ), and sdK NQ(pae) : Q] = 221 1f (K, 2) # 1 thenK NQ(u2- ) must be equal to either
Q(Camacz) + Comixezy) OF Q(Comixiz) = Cobiezy)- ThUs,E(K,2) = 2 and[K N Q(pa~) : Q] = 2m(K:2)=2,
In either case, the-factor of S(n, K) in (13) simplifies to

(15) S(n, K)s = [K N Q(uzw) : QL@ 2n (1),
The following properties ob (n, K') are easy to verify:

(16) S(m, K)S(n, K) dividesS(m + n, K)

and

17) S(n, K) dividesS(n, F) if K C F.
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5.4. Odd primes. The following proposition establishes Theorem 14 for2heart of|G|. The special
case wherd{ = Q was done earlier in Example 12.

ProOPOSITION15. LetG be a finite subgroup o&L,, (C). Assume that the traces of all elementgjof
belong to some algebraic number figld Then|G|, dividesS(n, K) for all odd primes/.

PROOE Replacingg by a conjugate ifGL,,(C) if necessary, we can make sure tfat GL,, (F) for
some algebraic number field © K. Indeed, any splitting field fog that is finite overK will serve this
purpose; see2D, Theorem 9.9]. LeD = Or denote the ring of algebraic integersBfand consider any
non-zero primg of O such thag C GL,,(0O,) and? ¢ p. Put(p) = p N Z and assume thatis chosen as
in Lemma 7 and also satisfigs> n. Letp: G — GL, (Fxr(,)) denote the reduction homomorphism (10)
restricted toG. Upon replacing; by a Sylow/-subgroup, the map becomes injective, by Lemma 9, and
our goal now is to show thag| dividesS(n, K),.

As in the first paragraph of the proof of Lemma 6, one sees ligatraces of all elements gfactually
belong to the ring of algebraic integefy of the field K’ = K N Q(pe=). Thereforetrace(p(g)) € F,
holds for allg € G, whereq = N(p N Ox/) = p/. Lemma 8 now implies that(G) is conjugate to a
subgroup ofGL, (F,) and Lemma 7 further gives that

G| divides |GL,(F,)|e = (0oLl (|2,
£—1

wherer = (EwIE Now, for odd/,

S(n, K)y = ¢t ke ({ﬁJ !)e

withm(K, ) = 1+v([KNQ(pe) : Q]) andt(K, £) = (5717[K£66“£w):Q]) by (14). Since the residue class
of p generate$z/¢57)* for all s, p remains prime irZ[{,:]; see the proof of Lemma 7 andl9, Theorem

2 on p. 196]. In particularp remains prime inDg-, and sof = f(p N O/ /Q) = [K N Q(pe=) : Q.
Therefore| GL,,(F,)|¢ = S(n, K), and the proposition is proved. O

5.5. Unitary, orthogonal and symplectic groups.In this section, we review some standard facts about
hermitian and skew-hermitian forms and certain classicaligs that are associated with them. Throughout,
k will denote a field and, — «f will be an automorphism df satisfyingd? = Id. We assume for simplicity
thatchar k # 2.

5.5.1. Sesquilinear formsLet V' denote am-dimensional vector space over A bi-additive map
B:V xV — kis calledsesquilineawith respect td@) if

Blav, bw) = ab? (v, w)

holds for allv,w € V anda,b € k. When#@ is the identity, sesquilinear forms are ordinary bilinear
forms. A sesquilinear forng is callednon-singularif 5 satisfies the following equivalent conditions: (i)
B(v, V) = {0} for v € V impliesv = 0; (ii) 5(V,v) = {0} forv € V impliesv = 0; (iii) for any basis
{v1,...,v,} of V, the matrix(5(v;, v5)),, ., has non-zero determinant; s&9[Proposition XI11.7.2]. If3
is any sesquilinear form oW andg € GL(V) then, defining39 (v, v’) := B(g(v), g(v")) for v,v’ € V, one
again obtains a sesquilinear fog#fi on V' with respect td@; it is calledequivalento 5.

Sesquilinear forms satisfying3(w,v) = B(v,w)? (resp. f(w,v) = —B(v,w)?) for all v,w € V
are callechermitian(resp. skew-hermitiap The stabilizer inGL(V') of a non-singular hermitian or skew-
hermitian formg is called the group osometrief (V, 5) and is denoted biso(V, 3); so

Iso(V,8) = {g € GL(V) | B(g(v),g(v")) = B(v,v") forallv,v € V'} .
Let 8 be non-singular skew-hermitian. #v, v) # 0 for somev € V theng’ = (v, v) is a non-singular
hermitian form on with Iso(V, 5’) = Iso(V, ). On the other hand, if(v,v) = 0 forallv € V thenitis
easy to see tha = Id and soj is an alternating bilinear form. Therefore, when studysgmetry groups
of non-singular hermitian or skew-hermitian fori®n V, it suffices to consider the following cases:
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unitary case: 3 is hermitian with respect té #~ 1d;
orthogonal case: 3 is symmetric bilineard = 1d);
symplectic case:( is alternating bilinearq = 1d).
5.5.2. Twisting modulesNow assume that’ is a finitely generated (leffy[G]-module, wherej is a
finite group. We let’? = {v% | v € V} denote a copy oF with operations
v 4w = w+w)?, (aw)? =d®? and go¥ = (gv)?

forv,w € V,a € kandg € G. ThenV? becomes &[G]-module and

0
(18) tracey o /i (g) = (tracev/[k(g))
holds for allg € G. Furthermore, there is an isomorphisniké§]-modules

(19) (V & V)" = {sesquilinear form¥ x V — k with respect t@} .

The isomorphism sends a linear fpr V @, V? — k to the form@: V x V — k given by g (v, w) =
¢(v®w?). The groupS, = (1) acts on the space of sesquilinear forhsV” x V — k with respect t@ by

(78)(v,w) = ﬁ(v,w)e

forv,w € V. This action commutes with the action@f Note however that the action is oritysemilinear:
7(aB) = a’7. Clearly,3 is hermitian (resp. skew-hermitian) if and onlyri = 3 (resp.73 = —03).

LEMMA 16. Leto: G — GL(V) be an irreducible representation of the finite groGiplf V* = V% as
k[G]-modules thera (G) C Iso(V, 3) for some non-singular forrd on V' that is hermitian or skew-hermitian
with respect td.

PROOF SinceV* = V?, we havel’* @, V = (V @, V?)" and so
Endy (V') = {sesquilinear form% x V — k with respect t@}

ask[G]-modules, by (19). The identitidy € Endi (V') therefore corresponds to a non-z€rénvariant
sesquilinear forms. Write 8 = G4 + - with gL = %(1 + 7)(8), whereS; = (r) as above. Then
76+ = +3; so [y is hermitian and3_ is skew-hermitian with respect # and at least one of them is
non-zero. Moreover, bothy areG-invariant, since the actions efandG commute. Finally, any non-zero
G-invariant hermitian or skew-hermitian form dn is non-singular, because its radical is a propgi]-
submodule o/, and hence it must be zero becallsés assumed simple. O

5.5.3. Isometry groups over finite field§Ve will now concentrate on the case of a finite fikle- [, of
orderq = p/ for some odd prime. Let 3 be a non-singular hermitian or skew-hermitian formior 4
Since we are only interested in the group of isomefiie§V, 3), we may assume thatis unitary, orthogonal
or symplectic. The orders of these groups are classicalpsaedonné 4] or Artin [1, Section 111.6], for
example. The original sources are Minkowski’s dissertaf?] and Dickson 13].

unitary case: Sincef has ordee in this case,f must be even. Moreoves, is unique up to equiva-
lence, and sd@so(V, ) is determined up to conjugation. The ordedef(V, 3) is

@0 sofV, )] = A T[4 — (1))
=1

symplectic case:Again, 5 is unique up to equivalence. The dimensiomust be even. One has

n/2

(21) [ Tso(V, 8)] = ¢" /] (a* - 1).

i=1
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orthogonal case: Here, the order ofso(V, 3) is given by
) (n—1)/2 .
2¢ VY4 T (¢ - 1) if n is odd,
(22) | ISO(V, ﬁ)| = =t (n—2)/2
2¢" (=24 (g2 — ¢) H (¢* —1) if niseven,
=1
wheres = +1 depends on the formi. The detailed description aefwill not matter for us.
LEMMA 17. Let K be an algebraic number field contained@ju2- ) (so K is Galois overQ and in

particular stable under complex conjugation).Af ¢ R then assume that K, 2) = 1. There are infinitely
many odd primes of the ring of algebraic integer® k- satisfying the following two conditions:

(i) pis stable under complex conjugation, and
(i) If B is any non-singular hermitian or skew-hermitian form Bn= F; with respect to the au-
tomorphismd of Ok /p = [, that is afforded by complex conjugation theRo(V, 5)|» divides

S(TI,, K)Q
PrROOF. We will need the following elementary observation.plfs a prime satisfying = —1 + 2*
mod 2F+1 for somek > 2 then, for all positive integers
(23) (p' = (=1)")2 = 2"y .

To see this, we remark first thgt’ — 1), = 2 holds for odd, because the residue clasgpahodulo4 is the
nonidentity element ofZ/4Z)*, and hence the same holds for all odd powerg.dfloreover, since? = 1
mod 21, we havep’ = 1 mod 2¥*! for all eveni, and hencép’ + 1), = 2. Now, to prove (23), assume
first thati is odd, sayi = 2j + 1. Then the foregoing implies that — (—1)! = p¥p+1=p+1 = 2*
mod 21, and so(p’ — (—1)%), = 2%, proving (23) for odd values af Finally, assume that= 2;j. Then
p'— (=1)" = (p? = 1)(p? +1). If j is odd then we know thdp’ + 1), = 2¥ and(p’ — 1), = 2, and hence
(p* — (—1)")9 = 2¥+1, as desired. Whejis even ther(p’ — 1), = 2%, by induction, andp’ + 1), = 2,
as we remarked earlier. Thus, (23) is proved in all cases.

Turning to the proof of the lemma, note tHdy Q is Galois, being a subextension of the abelian extension
Q(p2=)/Q. Putm = m(K,2),t = t(K,2) and{ = (am. Then (15) becomes

S(n, K)y = [K : Q2" (n)),

and K is one of the field®(¢) or Q(¢ + ¢~1); see§5.3. We will deal with each of these cases separately.
Throughoutp will denote a prime ideal o® x and we puyy = N (p) and(p) = pN Z.

First consider the case whefé is real. Then property (i) is automatic afh(V, 3) is symplectic or
orthogonal. Replacing the factty*/% —¢) in formula (22) for evem by its multiple(q™/? —¢)(¢"/?+¢) /2 =
(¢" — 1)/2 and deleting,-factors (which are odd) we obtain the expressﬂ)?ﬁ(q% —1) that only depends
onn andq and is identical to (21) stripped of itsfactors. Put

(n-1/2
2 J[ -1 ifnisodd,
O(n,q) = n/2 =t
| (G if n is even.

i=1
Now ¢ = pf, wheref = [Ox/p : F,] is a divisor of[K : Q]; so f is a power of2. Choosep to lie over any
rational primep with p = 3 mod 8. Then (23) withk = 2 implies that the2-part of ¢** — 1 fori > 1is
given by(¢* — 1), = 8i,. It follows that the2-part ofo(n, q) can be written as(n, q), = fL"/212"(n!),
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in both cases. Sincg is a divisor of[K : Q] andt¢ equalsl or 2, we see thab(n, q), dividesS(n, K),
which settles the symplectic and orthogonal cases.

Next, let K = Q(¢) with m > 2. Choosep to lie over any rational prime satisfyingp = —1 + 2™
mod 2™F1, Thep is stable under complex conjugation. Indeed, the decortippgjroup ofp is generated
by the automorphism ok sending( to ¢? (cf., e.g., L9, Corollary on p. 197]), and our choice pfimplies
that(? = ¢! = (. Thus, complex conjugation belongs to the decomposition groupgfand it must in
fact generated the decomposition group, becalseot a square ifal(K/Q). Sincep is unramified over
Q, its relative degree ove equalsf = 2; soq = p?. Therefore, (20) and (23) give

Iso(V, )]z = [[ (0 = (=1)))2 = 27" (nt)y = 207127 (1), .
i=1
Since[K : Q] = 2™~ ! andt = 1, the last expression is equal $§n, K )., thereby completing the proof of
the lemma. O

The lemma fails in the excluded case ¢ R, t(K,2) = 2. For example, leX = Q(v/—2). Then
m(K,2) = 3 andt(K,2) = 2 and soS(n, K)s = 2L%J2"(n!)2. On the other hand, i is an odd prime
of Ok that is stable under complex conjugation, th&p/Q) = 2 andp = —1 mod 8. It follows that
|Iso(V, B)]2 = [T, (" — (—1)%)2 is divisible by2®" which is too big.

5.6. The prime¢ = 2. The following proposition complements Proposition 15. tul be nice to
remove the restriction&”’ = K N Q(u2-) C Ror¢(K,2) = 1 on K. This would require replacing the
isometry groupdso(V, 3) by suitable subgroups.

PROPOSITION18. LetG be a finite subgroup d&L,,(C) such that the traces of all elementghbbelong
to some fixed algebraic number fieh. Assume thak’ = K N Q(pe~) C Ror t(K,2) = 1. Then|G|.
dividesS(n, K).

PROOF We may assume th&tis a2-group. Thereforejrace(g) € Ok for all g € G. ReplacingK
by K’, we may assume th& = K’ C Q(u2); see (17). Choose a primpeof Ok as in Lemma 17 and put
q = N (p). As in the proof of Proposition 15, we can arrange fhat GL,,(F) for some algebraic number
field F' containingK. Choose a prim& of O = O lying overp and putk = O/; soF, = Ok /p C k.
We may assumg¢ C GL,(Og) and that(p) = P N Z satisfiesp > n. By Lemma 9, the reduction
homomorphisnGL,, (Oy) — GL,, (k) is injective onG. We will write the restriction of this map t¢ as

p: G — GL,(k) .

Thentrace p(g) = traceg mod p € F, C kfor g € G, andtrace p(g~') = (trace p(g))e, wheref denotes
the automorphism df , that is afforded by complex conjugation, as in Lemma 17. N@ma 8 implies
thatp(G)? = v=1p(G)v C GL,(F,) for somev € GL, (k); SO we may consider the representation

o=(.)"0p:G— GL(V),

whereV = . Note thattraceo(g) = tracep(g) for all g € G. We will write V' as a direct sum of
F,[G]-submodule$/; on whichg acts as a subgroup &do(U;, 8;) for some non-singular hermitian or skew-
hermitian form; with respect to¥ on U;. This will imply that |G| divides]], | Iso(U;, §;)|2, and hence
|G| divides[], S(dimU;, K) by Lemma 17. Sinc], S(dimU;, K) is a divisor ofS(}_, dimU;, K) =
S(n, K), by (16), the theorem will follow.

To achieve the decomposition &f, recall thattrace o(g—!) = (trace U(g))e forallg € G. By (18),
this says that thé&,[G]-modulesV* and V% have the same character, and hence they are isomorphic; see
the proof of Lemma 8. Writd” = ), Vi("i) with non-isomorphic irreduciblé,[G]-modulesV;. Then

Ve @, (V)" andV? ~ @, (Vf)(m). For eachi, there is an’ so thatV,* = V. If i = i’ then
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Lemma 16 says thaf acts onV; as a subgroup ofso(V;, 3;) for some non-singular hermitian or skew-
hermitian formg; onV;,. Now assume that # i’. ThenV;* @ Vf is a direct summand df?, and hence

V; = (V)" @ V; is a direct summand df . Defining
Bilf" + v f7 4 0) = F)° + (v)

for f, f/ € V¥ andv, v’ € V; we obtain a non-singular hermitian form dhthat is preserved by the action
of G. This yields the desired decompositioniofand completes the proof of the theorem. O

6. Outlook

We conclude by surveying, without proofs, a number of toftied are related to the foregoing.

6.1. The largest groups and recent work on the Jordan bound.
6.1.1. The grou constructed in Proposition 4 is isomorphic to the so-caleghth product

Sm+1 1S, .

By definition,S,,, 11 1 S, is the semidirect product &7, , ; x S, , whereS, acts onSy,, | = Spuq1 X --- X
Sm+1 by permuting the: factorsS,,, 1. The special casen = 1 yields the groug+1}: S, a subgroup

of GL,,(Z) order2™n! which is also known as the automorphism groug (B,,) of the root system of type
B,,; see B]. For almost all values ofi, these particular groups turn out to be the largest finite/gsdhat
can be found insid&L,,(Z), and even insid&L,, (Q) (see§5.2). Indeed, Feit]6] has shown that, for all

n > 10 and forn = 1,3, 5, the finite subgroups o&L,,(Q) of largest order are precisely the conjugates
of Aut(B,,). For the remaining values of, Feit also characterizes the largest finite subgrougsiof(Q)
and shows that they are unique up to conjugacy. Feit's prepédds in an essential way on an unfinished
manuscript of Weisfeiler46] which establishes an estimate for the so-called Jordamdjosee§ 6.1.2
below. An alternative proof of Feit's theorem for sufficigriarge values of:. has been given by Friedland
[18] who relies on another (published) article of Weisfeile[47]. Both [46] and [47] depend crucially on
the classification of finite simple groups.

Sadly, the two protagonists of the developments sketchedkedre no longer with us: Walter Feit passed
away on July 29, 2004 while Boris Weisfeiler disappearecmudry 1985 during a hiking trip in the Chilean
Andes. The present status of the investigation into Wégsfeidisappearance is documented on the web site
http://www.weisfeiler.com/borisfor further information on the subject of finite subgroup&é.,, (Z) and
of GL,(Q), especially maximal ones, see, e.g., Nebe and Ple8&rHlesken 87, the first chapter of31]
and, at a more elementary level, the arti@e by Kuzmanovich and Pavlichenkov.

6.1.2. The Jordan bound comes from the following classesllt 24].

THEOREM 19 (Jordan 1878)There exists a functiofi: N — N such that every finite subgroup of
GL,(C) contains an abelian normal subgroup of index at mjgst).

Early estimates for the optimal functigiin) were quite astronomical. Until fairly recently, the best
known result was due to Blichfeldti(n) < n!6("~D(r(n+1)+1) wherer(n + 1) denotes the number of
primes< n + 1; see L5 Theorem 30.4]. Sinc8,,+1 C GL,,(C), as explained in the proof of Proposition 4,
one must certainly havgn) > (n + 1)! forn > 4. In his near-complete manuscrigf], Weisfeiler comes
close to proving that equality holds for large enoughhe shows that i > 63 thenj(n) < (n + 2)!. In
[47], Weisfeiler announces the weaker upper boifvd) < naleen+bnl Quite recently, Michael Collins
[11] was able to settle the problem by showing that/#{or 71 we do indeed havg(n) = (n + 1)! and, if
this bound is achieved by, thenG modulo its center is isomorphic 1§, ;.
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6.1.3. Analogs of Jordan’s Theorem for linear groups in ab@risticsp > 0 were established by
Weisfeiler |46], [47], Larsen and Pink3(], and Collins [L0]. While both Weisfeiler and Collins rely on the
classification theorem, Larsen and Pink prove a noneffeetirsion of Jordan’s theorem, without explicit
index and degree bounds, by using methods from algebraimetep and the theory of linear algebraic
groups instead. We will explain Collins’ modular versionJofdan’s Theorem. As usua,,(G) denotes the
maximal normap-subgroup of the finite grou@. Furthermore, a group is callepiasisimpléf it is perfect
and simple modulo its center. Collins’ result then readodsvrs.

THEOREM20 (Collins 2005).Let F' be a field of positive characteristicand letG be a finite subgroup
of GL,,(F'), wheren > 71. PutG = G/0O,(G). ThenG has a normal subgroupy such that

(@) N=AQ:...Qn, acentral product wit4 abelian and the&); (quasi)simple Chevalley groups in
characteristicp.

(b) [G . N] < (n + 2)' if p dividesn + 2,
' o (n+1)! otherwise.

6.2. The Minkowski sequenceM (n). A search of Sloane'®n-Line Encyclopedia of Integer Se-
quenceg43], by entering the first six term3, 24, 48, 5760, 11520, 2903040 of M (n), turns up a sequence
labeled A053657. This sequence has two additional desmipbesides Minkowski’'s description 81 (n)
as the least common multiple of the orders of all finite subgeoofGL,, (Q); the other two will be given
below. We know of no direct argument explaining the (provemgivalence of\/ (n) to the first sequence
below. The equivalence of the second sequendd (a) is currently supported only by empirical evidence.

e By Chabert et. al.§], the collection of all leading coefficients of polynomigféz) € Qz] of
degree at most such thatf(p) € Z holds for all prime is a fractional ideal of the for%z
for suitable positive integers(n). It turns out that formula (1) is identical with the formulaen
in [8, Proposition 4.1] for(n + 1). ThusM (n — 1) = a(n).

e Following Paul Hanna43, A075264], we letP(n, z) denote the coefficient of™ in the Taylor

series for( —2U=2))z gty = 0. Thus, >, (2)¢™ = Y20 | P(n, 2)z™ with ¢ = —2U=2) _

m n=1
1=, lf—fl and(?) = 2zl=Comtl) © por exampleP(1,2) = 2, P(2,2) = 5234322,
P(3,2) = %. In general,P(n, 2) € 2Q[z]; the polynomialsP(n, z) for n < 8 are listed
in sequence A075264 of OEI8J]. Paul Hanna has noted that the denominataP i, z), that is,
the positive generator of the idefal € Z | ¢P(n, z) € Z|z]}, appears to coincide with/ (n).
In [33], Minkowski states the following recursion for the sequen£(n); the recursion is easy to check
from (1):

(24) M@n+1)=2M(2n) and M(@2n)=2M@2n-1) [ pns.

p: p—1|2n
The product in (24) ranges over all primgsuch thap — 1 divides2n, andn, denotes the-part ofn, as
usual. This product has an interpretation in terms of thelfanBernoulli numbers3,, which are defined by
ey = fozo Bn%- In fact, B,, = 0 for oddn > 1 while By, is a rational number whose denominator,
when written in lowest terms, is given by the von Staudt-G&utheorem: it is equal Iﬁp: p—1l2n P cf. [7,
Theorem 1]. Moreover, for each primpesuch thap — 1 does not divid@n, the numerator of3,,, is divisible
by thep-partn, ; see [, Theorem 5]. Consequently, the pI’OdIF{L: p—1j2n PTp in (24) is equal to the
denominator oanﬁ . This was already pointed out by Minkowski i83]. Finally, the asymptotic order of

M, has been determined by Katznels@8][ lim, ... (M (n)/n!)"/" = ]_[ppl/(?"*l)2 ~ 3.4109.
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