ON THE COHEN-MACAULAY PROPERTY OF MULTIPLICATIVE INVARIANTS

MARTIN LORENZ

ABSTRACT. We investigate the Cohen-Macaulay property for rings of invariants under multiplicative actions of a finite group G. By definition, these are G-actions on Laurent polynomial algebras $\mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ that stabilize the multiplicative group consisting of all monomials in the variables x_i. For the most part, we concentrate on the case where the base ring \mathbb{k} is \mathbb{Z}. Our main result states that if G acts non-trivially and the invariant ring $\mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]^G$ is Cohen-Macaulay then the abelianized isotropy groups G_m^{ab} of all monomials m are generated by the bireflections in G_m and at least one G_m^{ab} is non-trivial. As an application, we prove the multiplicative version of Kemper’s 3-copies conjecture.

INTRODUCTION

This article is a sequel to [LPk]. Unlike in [LPk], however, our focus will be specifically on multiplicative invariants. In detail, let $L \cong \mathbb{Z}^n$ denote a lattice on which a finite group G acts by automorphisms. The G-action on L extends uniquely to an action by \mathbb{k}-algebra automorphisms on the group algebra $\mathbb{k}[L] \cong \mathbb{k}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ over any commutative base ring \mathbb{k}. We are interested in the question when the subalgebra $\mathbb{k}[L]^G$ consisting of all G-invariant elements of $\mathbb{k}[L]$ has the Cohen-Macaulay property. The reader is assumed to have some familiarity with Cohen-Macaulay rings; a good reference on this subject is [BH].

It is a standard fact that $\mathbb{k}[L]$ is Cohen-Macaulay precisely if \mathbb{k} is. On the other hand, while $\mathbb{k}[L]^G$ can only be Cohen-Macaulay when \mathbb{k} is so, the latter condition is far from sufficient and rather stringent additional conditions on the action of G on L are required to ensure that $\mathbb{k}[L]^G$ is Cohen-Macaulay. Remarkably, the question whether or not $\mathbb{k}[L]^G$ is Cohen-Macaulay, for any given base ring \mathbb{k}, depends only on the rational isomorphism class
of the lattice L, that is, the isomorphism class of $L \otimes \mathbb{Z} \mathbb{Q}$ as $\mathbb{Q}[G]$-module; see Proposition 3.4 below. This is in striking contrast with most other ring theoretic properties of $\mathbb{k}[L]^G$ (e.g., regularity, structure of the class group) which tend to be sensitive to the \mathbb{Z}-type of L. For an overview, see [L1].

We will largely concentrate on the case where the base ring \mathbb{k} is \mathbb{Z}. This is justified in part by the fact that if $\mathbb{Z}[L]^G$ is Cohen-Macaulay then likewise is $\mathbb{k}[L]^G$ for any Cohen-Macaulay base ring \mathbb{k} (Lemma 3.2). Assuming $\mathbb{Z}[L]^G$ to be Cohen-Macaulay, we aim to derive group theoretical consequences for the isotropy groups $G_m = \{ g \in G \mid g(m) = m \}$ with $m \in L$. An element $g \in G$ will be called a k-reflection on L if the sublattice $[g, L] = \{ g(m) - m \mid m \in L \}$ of L has rank at most k or, equivalently, if the g-fixed points of the \mathbb{Q}-space $L \otimes \mathbb{Z} \mathbb{Q}$ have codimension at most k. As usual, k-reflections with $k = 1$ and $k = 2$ will be referred to as reflections and bireflections. For any subgroup $H \leq G$, we let $H^{(2)}$ denote the subgroup generated by the elements of H that act as bireflections on L. Our main result now reads as follows.

Theorem. Assume that $\mathbb{Z}[L]^G$ is Cohen-Macaulay. Then $G_m/G_m^{(2)}$ is a perfect group (i.e., equal to its commutator subgroup) for all $m \in L$. If G acts non-trivially on L then some G_m is non-perfect.

It would be interesting to determine if the conclusion of the theorem can be strengthened to the effect that all isotropy groups G_m are in fact generated by bireflections on L. I do not know if, for the latter to occur, it is sufficient that G is generated by bireflections. The corresponding fact for reflection groups is known to be true: if G is generated by reflections on L (or, equivalently, on $L \otimes \mathbb{Z} \mathbb{Q}$) then so are all isotropy groups G_m; see [St, Theorem 1.5] or [Bou1, Exercise 8(a) on p. 139].

There is essentially a complete classification of finite linear groups generated by bireflections. In arbitrary characteristic, this is due to Guralnick and Saxl [GuS]; for the case of characteristic zero, see Huffman and Wales [HuW]. Bireflection groups have been of interest in connection with the problem of determining all finite linear groups whose algebra of polynomial invariants is a complete intersection. Specifically, suppose that $G \leq \text{GL}(V)$ for some finite-dimensional vector space V and let $\mathcal{O}(V) = S(V^*)$ denote the algebra of polynomial functions on V. It was shown by Kac and Watanabe [KW] and independently by Gordeev [G1] that if the algebra $\mathcal{O}(V)^G$ of all G-invariant polynomial functions is a complete intersection then G is generated by bireflections on V. The classification of all groups G so that $\mathcal{O}(V)^G$ is a complete intersection has been achieved by Gordeev [G2] and by Nakajima [N].

The last assertion of the above Theorem implies in particular that if $\mathbb{Z}[L]^G$ is Cohen-Macaulay and G acts non-trivially on L then some element of
\(\mathcal{G} \) acts as a non-trivial bireflection on \(L \). Hence we obtain the following multiplicative version of Kemper’s 3-copies conjecture:

Corollary. If \(\mathcal{G} \) acts non-trivially on \(L \) and \(r \geq 3 \) then \(\mathbb{Z}[L^\oplus r]^\mathcal{G} \) is not Cohen-Macaulay.

The 3-copies conjecture was formulated by Kemper [K1, Vermutung 3.12] in the context of polynomial invariants. Using the above notation, the original conjecture states that if \(1 \neq \mathcal{G} \leq {\text{GL}}(V) \) and the characteristic of the base field of \(V \) divides the order of \(\mathcal{G} \) (“modular case”) then the invariant algebra \(\mathcal{O}(V^{\oplus r})^\mathcal{G} \) will not be Cohen-Macaulay for any \(r \geq 3 \). This is still open. The main factors contributing to our success in the multiplicative case are the following:

- **Multiplicative actions are permutation actions:** \(\mathcal{G} \) permutes the \(k \)-basis of \(k[L] \) consisting of all “monomials”, corresponding to the elements of the lattice \(L \). Consequently, the cohomology \(H^*(\mathcal{G}, k[L]) \) is simply the direct sum of the various \(H^*(\mathcal{G}_m, k) \) with \(m \) running over a transversal for the \(\mathcal{G} \)-orbits in \(L \).
- **Up to conjugacy, there are only finitely many finite subgroups of \(\text{GL}_n(\mathbb{Z}) \) and these groups are explicitly known for small \(n \).** A crucial observation for our purposes is the following: if \(\mathcal{G} \) is a nontrivial finite perfect subgroup of \(\text{GL}_n(\mathbb{Z}) \) such that no \(1 \neq g \in \mathcal{G} \) has eigenvalue 1 then \(\mathcal{G} \) is isomorphic to the binary icosahedral group and \(n \geq 8 \); see Lemma 2.3 below.

A brief outline of the contents of this article is as follows. The short preliminary Section 1 is devoted to general actions of a finite group \(\mathcal{G} \) on a commutative ring \(R \). This material relies rather heavily on [LPk]. We liberate a technical result from [LPk] from any a priori hypotheses on the characteristic; the new version (Proposition 1.4) states that if \(R \) and \(R^\mathcal{G} \) are both Cohen-Macaulay and \(H^i(\mathcal{G}, R) = 0 \) for \(0 < i < k \) then \(H^k(\mathcal{G}, R) \) is detected by \(k + 1 \)-reflections. Section 2 then specializes to the case of multiplicative actions. We assemble the main tools required for the proof of the Theorem, which is presented in Section 3. The article concludes with a brief discussion of possible avenues for further investigation and some examples.

1. Finite Group Actions on Rings

1.1. In this section, \(R \) will be a commutative ring on which a finite group \(\mathcal{G} \) acts by ring automorphisms \(r \mapsto g(r) \ (r \in R, g \in \mathcal{G}) \). The subring of \(\mathcal{G} \)-invariant elements of \(R \) will be denoted by \(R^\mathcal{G} \).
1.2. Generalized reflections. Following [GK], we will say an element \(g \in \mathcal{G} \) acts as a \(k \)-reflection on \(R \) if \(g \) belongs to the inertia group
\[
I_G(\mathfrak{P}) = \{ g \in \mathcal{G} \mid g(r) - r \in \mathfrak{P} \forall r \in R \}
\]
of some prime ideal \(\mathfrak{P} \in \text{Spec} R \) with \(\text{height} \ \mathfrak{P} \leq k \). The cases \(k = 1 \) and \(k = 2 \) will be referred to as reflections and bireflections, respectively. Define the ideal \(I_R(g) \) of \(R \) by
\[
I_R(g) = \sum_{r \in R} (g(r) - r)R.
\]
Evidently, \(\mathfrak{P} \supseteq I_R(g) \) is equivalent to \(g \in I_G(\mathfrak{P}) \). Thus:
\[
g \text{ is a } k \text{-reflection on } R \text{ if and only if } \text{height } I_R(g) \leq k.
\]
For each subgroup \(\mathcal{H} \leq \mathcal{G} \), we put
\[
I_R(\mathcal{H}) = \sum_{g \in \mathcal{H}} I_R(g).
\]
It suffices to let \(g \) run over a set of generators of the group \(\mathcal{H} \) in this sum.

1.3. A height estimate. The cohomology \(H^*(\mathcal{G}, R) = \oplus_{n \geq 0} H^n(\mathcal{G}, R) \) has a canonical \(R^\mathcal{G} \)-module structure: for each \(r \in R^\mathcal{G} \), the map \(\rho: R \rightarrow R, s \mapsto rs \), is \(\mathcal{G} \)-equivariant and hence it induces a map on cohomology \(\rho_*: H^*(\mathcal{G}, R) \rightarrow H^*(\mathcal{G}, R) \). The element \(r \) acts on \(H^*(\mathcal{G}, R) \) via \(\rho_* \). Let \(\text{res}_\mathcal{H}^\mathcal{G}: H^*(\mathcal{G}, R) \rightarrow H^*(\mathcal{H}, R) \) denote the restriction map.

The following lemma extends [LPk, Proposition 1.4].

Lemma. For any \(x \in H^*(\mathcal{G}, R) \),
\[
\text{height } \text{ann}_{R^\mathcal{G}}(x) \geq \inf \{ \text{height } I_R(\mathcal{H}) \mid \mathcal{H} \leq \mathcal{G}, \text{res}_\mathcal{H}^\mathcal{G}(x) \neq 0 \}.
\]

Proof. Put \(\mathcal{X} = \{ \mathcal{H} \leq \mathcal{G} \mid \text{res}_\mathcal{H}^\mathcal{G}(x) = 0 \} \). For each \(\mathcal{H} \leq \mathcal{G} \), let \(R^\mathcal{H}_{R^\mathcal{G}} \) denote the image of the relative trace map \(R^\mathcal{H} \rightarrow R^\mathcal{G}, r \mapsto \sum_g g(r) \), where \(g \) runs over a transversal for the cosets \(\mathcal{g}\mathcal{H} \) of \(\mathcal{H} \) in \(\mathcal{G} \). By [LPk, Lemma 1.3],
\[
R^\mathcal{H}_{R^\mathcal{G}} \subseteq \text{ann}_{R^\mathcal{G}}(x) \quad \text{for all } \mathcal{H} \in \mathcal{X}.
\]
To prove the lemma, we may assume that \(\text{ann}_{R^\mathcal{G}}(x) \) is a proper ideal of \(R^\mathcal{G} \); for, otherwise \(\text{height } \text{ann}_{R^\mathcal{G}}(x) = \infty \). Choose a prime ideal \(\mathfrak{p} \) of \(R^\mathcal{G} \) with \(\mathfrak{p} \supseteq \text{ann}_{R^\mathcal{G}}(x) \) and \(\text{height } \mathfrak{p} = \text{height } \text{ann}_{R^\mathcal{G}}(x) \). If \(\mathfrak{P} \) is a prime of \(R \) that lies over \(\mathfrak{p} \) then
\[
R^\mathcal{H}_{R^\mathcal{G}} \subseteq \mathfrak{P} \quad \text{for all } \mathcal{H} \in \mathcal{X}
\]
and \(\text{height } \mathfrak{P} = \text{height } \mathfrak{p} \). By [LPk, Lemma 1.1], the above inclusion implies that
\[
[I_G(\mathfrak{P}) : I_R(\mathfrak{P})] \in \mathfrak{P} \quad \text{for all } \mathcal{H} \in \mathcal{X}.
\]
Put \(p = \text{char } R/\mathfrak{P} \) and let \(\mathcal{P} \leq I_G(\mathfrak{P}) \) be a Sylow \(p \)-subgroup of \(I_G(\mathfrak{P}) \) (so \(\mathcal{P} = 1 \) if \(p = 0 \)). Then \(I_R(\mathcal{P}) \subseteq \mathfrak{P} \) and \([I_G(\mathfrak{P}) : \mathcal{P}] \notin \mathfrak{P} \). Hence,
\(\mathcal{P} \notin \mathcal{X} \) and \(\text{height } I_R(\mathcal{P}) \leq \text{height } \mathfrak{P} = \text{height } \text{ann}_{R^G}(x) \). This proves the lemma.

We remark that the lemma and its proof carry over verbatim to the more general situation where \(H^*(\mathcal{G}, R) \) is replaced by \(H^*(\mathcal{G}, M) \), where \(M \) is some module over the skew group ring of \(\mathcal{G} \) over \(R \); cf. [LPk]. However, we will not be concerned with this generalization here.

1.4. A necessary condition. In this section, we assume that \(R \) is noetherian as \(R^G \)-module. This assumption is satisfied whenever \(R \) is an affine algebra over some noetherian subring \(k \subseteq R^G \); see [Bou2, Théorème 2 on p. 33]. Put

\[
\mathcal{X}_k = \{ \mathcal{H} \leq \mathcal{G} \mid \text{height } I_R(\mathcal{H}) \leq k \} .
\] (1.1)

Note that each \(\mathcal{H} \in \mathcal{X}_k \) consists of \(k \)-reflections on \(R \). The following proposition is a characteristic-free version of [LPk, Proposition 4.1].

Proposition. Assume that \(R \) and \(R^G \) are Cohen-Macaulay. If \(H^i(\mathcal{G}, R) = 0 \) \((0 < i < k)\) then the restriction map

\[
\text{res}^G_{\mathcal{X}_{k+1}} : \prod_{\mathcal{H} \in \mathcal{X}_{k+1}} H^k(\mathcal{H}, R) \to H^k(\mathcal{G}, R)
\]

is injective.

Proof. We may assume that \(H^k(\mathcal{G}, R) \neq 0 \). Let \(x \in H^k(\mathcal{G}, R) \) be nonzero and put \(a = \text{ann}_{R^G}(x) \). By [LPk, Proposition 3.3], \(\text{depth } a \leq k + 1 \). Since \(R^G \) is Cohen-Macaulay, \(\text{depth } a = \text{height } a \). Thus, Lemma 1.3 implies that \(k + 1 \geq \text{height } I_R(\mathcal{H}) \) for some \(\mathcal{H} \leq \mathcal{G} \) with \(\text{res}^G_{\mathcal{H}}(x) \neq 0 \). The proposition follows.

Note that the vanishing hypothesis on \(H^i(\mathcal{G}, R) \) is vacuous for \(k = 1 \). Thus, \(H^1(\mathcal{G}, R) \) is detected by bireflections whenever \(R \) and \(R^G \) are both Cohen-Macaulay.

2. Multiplicative Actions

2.1. For the remainder of this article, \(L \) will denote a lattice on which the finite group \(\mathcal{G} \) acts by automorphisms \(m \mapsto g(m) \) \((m \in L, g \in \mathcal{G})\). The group algebra of \(L \) over some commutative base ring \(k \) will be denoted by \(k[L] \). We will use additive notation in \(L \). The \(k \)-basis element of \(k[L] \) corresponding to the lattice element \(m \in L \) will be written as

\[
x^m .
\]
so \(x^0 = 1, x^{m+m'} = x^m x^{m'} \), and \(x^{-m} = (x^m)^{-1} \). The action of \(G \) on \(L \) extends uniquely to an action by \(\mathbb{k} \)-algebra automorphisms on \(\mathbb{k}[L] \):

\[
g(\sum_{m \in L} k_m x^m) = \sum_{m \in L} k_m x^{g(m)}.\]

The invariant algebra \(\mathbb{k}[L]^G \) is a free \(\mathbb{k} \)-module: a \(\mathbb{k} \)-basis is given by the \(G \)-orbit sums \(\sigma(m) = \sum_{m' \in G(m)} x^{m'} \), where \(G(m) \) denotes the \(G \) -orbit of \(m \in L \). Since all orbit sums are defined over \(\mathbb{Z} \), we have

\[
\mathbb{k}[L]^G = \mathbb{k} \otimes \mathbb{Z} [L]^G. \tag{2.1}
\]

2.2. Let \(\mathcal{H} \) be a subgroup of \(G \). We compute the height of the ideal \(I_{\mathbb{k}[L]}(\mathcal{H}) \) from §1.2. Let

\[
L^\mathcal{H} = \{ m \in L \mid g(m) = m \text{ for all } g \in \mathcal{H} \}
\]
denote the lattice of \(\mathcal{H} \)-invariants in \(L \) and define the sublattice \([\mathcal{H}, L]\) of \(L \) by

\[
[\mathcal{H}, L] = \sum_{g \in \mathcal{H}} [g, L],
\]

where \([g, L] = \{ g(m) - m \mid m \in L \}\). It suffices to let \(g \) run over a set of generators of the group \(\mathcal{H} \) in the above formulas.

Lemma. With the above notation, \(\mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H}) \cong \mathbb{k}[L]/[\mathcal{H}, L] \) and

\[
\text{height } I_{\mathbb{k}[L]}(\mathcal{H}) = \text{rank } [\mathcal{H}, L] = \text{rank } L - \text{rank } L^\mathcal{H}.\]

Proof. Since the ideal \(I_{\mathbb{k}[L]}(\mathcal{H}) \) is generated by the elements \(x^{g(m)} m - 1 \) with \(m \in L \) and \(g \in \mathcal{H} \), the isomorphism \(\mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H}) \cong \mathbb{k}[L]/[\mathcal{H}, L] \) is clear.

To prove the equality \(\text{rank } [\mathcal{H}, L] = \text{rank } L - \text{rank } L^\mathcal{H} \), note that the rational group algebra \(\mathbb{Q}[\mathcal{H}] \) is the direct sum of the ideals \(\mathbb{Q} \left(\sum_{g \in \mathcal{H}} g \right) \) and \(\sum_{g \in \mathcal{H}} \mathbb{Q}(g-1) \). This implies \(L \otimes \mathbb{Q} = (L^\mathcal{H} \otimes \mathbb{Q}) \oplus ([\mathcal{H}, L] \otimes \mathbb{Q}) \). Hence, \(\text{rank } L = \text{rank } L^\mathcal{H} + \text{rank } [\mathcal{H}, L] \).

To complete the proof, it suffices to show that

\[
\text{height } \mathfrak{p} = \text{rank } [\mathcal{H}, L]
\]

holds for any minimal covering prime \(\mathfrak{p} \) of \(I_{\mathbb{k}[L]}(\mathcal{H}) \). Put \(A = L/[\mathcal{H}, L] \) and \(\mathfrak{p} = \mathfrak{p}/I_{\mathbb{k}[L]}(\mathcal{H}) \), a minimal prime of \(\mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H}) = \mathbb{k}[A] \). Further, put \(\mathfrak{p} = \mathfrak{p} \cap \mathbb{k} = \mathfrak{p} \cap k \). Since the extension \(k \hookrightarrow k[A] = \mathbb{k}[L]/I_{\mathbb{k}[L]}(\mathcal{H}) \) is free, \(\mathfrak{p} \) is a minimal prime of \(\mathbb{k} \); see [Bou3, Cor. on p. AC VIII.15]. Hence, descending chains of primes in \(\mathbb{k}[L] \) starting with \(\mathfrak{p} \) correspond in a 1-to-1 fashion to descending chains of primes of \(Q(\mathbb{k}/\mathfrak{p})[L] \) starting with the prime
that is generated by \mathfrak{P}. Thus, replacing k by $Q(k/p)$, we may assume that k is a field. But then
\[
\text{height } \mathfrak{P} = \dim k[L] - \dim k[L]/\mathfrak{P} = \text{rank } L - \dim k[L]/\mathfrak{P}.
\]
Let $\mathfrak{P}_0 = \mathfrak{P} \cap k[A_0]$, where A_0 denotes the torsion subgroup of A. Since \mathfrak{P} is minimal, we have $\mathfrak{P} = \mathfrak{P}_0 k[A]$ and so $k[L]/\mathfrak{P} \cong k[A_0]/\mathfrak{P}_0$, where $k_0 = k[A_0]/\mathfrak{P}_0$ is a field. Thus, $\dim k[L]/\mathfrak{P} = \text{rank } A/A_0$. Finally, $\text{rank } A/A_0 = \text{rank } A = \text{rank } L - \text{rank } [H, L]$, which completes the proof. \hfill \square

Specializing the lemma to the case where $H = \langle g \rangle$ for some $g \in G$, we see that g acts as a k-reflection on $k[L]$ if and only if g acts as a k-reflection on L, that is,
\[
\text{rank } [g, L] \leq k.
\]
Moreover, the collection of subgroups \mathfrak{X}_k in equation (1.1) can now be written as
\[
\mathfrak{X}_k = \{ H \leq G \mid \text{rank } L/L^H \leq k \}.
\] (2.2)

2.3. Fixed-point-free lattices for perfect groups. The G-action on L is called fixed-point-free if $g(m) \neq m$ holds for all $0 \neq m \in L$ and $1 \neq g \in G$. Recall also that the group G is said to be perfect if $G^{ab} = G/[G, G] = 1$.

Lemma. Assume that G is a nontrivial perfect group acting fixed-point-freely on the nonzero lattice L. Then G is isomorphic to the binary icosahedral group $2.A_5 \cong \mathbb{SL}_2(\mathbb{F}_5)$ and rank L is a multiple of 8.

Proof. Put $V = L \otimes \mathbb{C}$, a nonzero fixed-point-free $\mathbb{C}[G]$-module. By a well-known theorem of Zassenhaus (see [Wo, Theorem 6.2.1]), G is isomorphic to the binary icosahedral group $2.A_5$ and the irreducible constituents of V are 2-dimensional. The binary icosahedral group has two irreducible complex representations of degree 2; they are Galois conjugates of each other and both have Frobenius-Schur indicator -1. We denote the corresponding $\mathbb{C}[G]$-modules by V_1 and V_2. Both V_i occur with the same multiplicity in V, since V is defined over \mathbb{Q}. Thus, $V \cong (V_1 \oplus V_2)^m$ for some m and rank $L = 4m$. We have to show that m is even. Since both V_i have indicator -1, it follows that $V_1 \oplus V_2$ is not defined over \mathbb{R}, whereas each V_i^2 is defined over \mathbb{R}; see [I, (9.21)]. Thus, $V_1 \oplus V_2$ represents an element x of order 2 in the cokernel of the scalar extension map $G_0(\mathbb{R}[G]) \to G_0(\mathbb{C}[G])$, and $mx = 0$. Therefore, m must be even, as desired. \hfill \square

We remark that the binary icosahedral group $2.A_5$ is isomorphic to the subgroup of the nonzero quaternions \mathbb{H}^* that is generated by $(a + i + ja^*)/2$ and $(a + j + ka^*)/2$, where $a = (1 + \sqrt{5})/2$ and $a^* = (1 - \sqrt{5})/2$ and $\{1, i, j, k\}$ is the standard \mathbb{R}-basis of \mathbb{H}. Thus, letting $2.A_5$ act on \mathbb{H} via left
multiplication, \(\mathbb{H} \) becomes a 2-dimensional fixed-point-free complex representation of \(2.A_5 \). It is easy to see that this representation can be realized over \(K = \mathbb{Q}(i, \sqrt{5}) \); so \(\mathbb{H} = V \otimes_K \mathbb{C} \) with \(\dim_{\mathbb{Q}} V = 2[K : \mathbb{Q}] = 8 \). Any \(2.A_5 \)-lattice for \(V \) will be fixed-point-free and have rank 8.

2.4. **Isotropy groups.** The isotropy group of an element \(m \in L \) in \(G \) will be denoted by \(G_m \); so

\[
G_m = \{ g \in G \mid g(m) = m \}.
\]

The \(G \)-lattice \(L \) is called *faithful* if \(\ker_G(L) = \bigcap_{m \in L} G_m = 1 \). The following lemma, at least part (a), is well-known. We include the proof for the reader’s convenience.

Lemma.

(a) The set of isotropy groups \(\{ G_m \mid m \in L \} \) is closed under conjugation and under taking intersections.

(b) Assume that the \(G \)-lattice \(L \) is faithful. If \(G_m (m \in L) \) is a minimal non-identity isotropy group then \(G_m \) acts fixed-point-freely on \(L/L^{G_m} \neq 0 \).

Proof. Consider the \(\mathbb{Q}[G] \)-module \(V = L \otimes_{\mathbb{Z}} \mathbb{Q} \). The collection of isotropy groups \(G_m \) remains unchanged when allowing \(m \in V \). Moreover, for any subgroup \(H \leq G \), \(L/L^H \) is an \(H \)-lattice with \(L/L^H \otimes_{\mathbb{Z}} \mathbb{Q} \cong V/V^H \).

(a) The first assertion is clear, since \(^g G_m = G_{g(m)} \) holds for all \(g \in G, m \in V \). For the second assertion, let \(M \) be a non-empty subset of \(V \) and put \(G_M = \bigcap_{m \in M} G_m \). We must show that \(G_M = G_m \) for some \(m \in V \). Put \(W = V^{G_M} \). If \(g \in G \setminus G_M \) then \(W^g = \{ w \in W \mid g(w) = w \} \) is a proper subspace of \(W \), since some element of \(M \) does not belong to \(W^g \). Any \(m \in W \setminus \bigcup_{g \in G \setminus G_M} W^g \) satisfies \(G_m = G_M \).

(b) Let \(H = G_m \) be a minimal non-identity member of \(\{ G_m \mid m \in V \} \). As \(\mathbb{Q}[H] \)-modules, we may identify \(V^H \oplus V/V^H \). If \(0 \neq v \in V/V^H \) then \(H_v = H \cap G_v \subsetneq H \). In view of (a), our minimality assumption on \(H \) forces \(H_v = 1 \). Thus, \(H \) acts fixed-point-freely on \(V/V^H \), and hence on \(L/L^H \). \(\Box \)

Proposition. Assume that \(L \) is a faithful \(G \)-lattice such that all minimal isotropy groups \(1 \neq G_m (m \in L) \) are perfect. Then \(\text{rank} L/L^H \geq 8 \) holds for every nonidentity subgroup \(H \leq G \).

In the notation of equation (2.2), the conclusion of the proposition can be stated as follows:

\[
\mathcal{X}_k = \{ 1 \} \text{ for all } k < 8.
\]

Proof of the Proposition. Put \(\overline{H} = \bigcap_{m \in L^H} G_m \). Then \(\overline{H} \geq H \) and \(L^{\overline{H}} = L^H \). Lemma 2.4(a) further implies that \(\overline{H} = G_m \) for some \(m \). Replacing \(H \) by \(\overline{H} \), we may assume that \(H \) is a nonidentity isotropy group. If
is not minimal then replace \(\mathcal{H} \) by a smaller nonidentity isotropy group; this does not increase the value of rank \(L/L^\mathcal{H} \). Thus, we may assume that \(\mathcal{H} \) is a minimal nonidentity isotropy group, and hence \(\mathcal{H} \) is perfect. By Lemma 2.4(b), \(\mathcal{H} \) acts fixed-point-freely on \(L/L^\mathcal{H} \neq 0 \) and Lemma 2.3 implies that rank \(L/L^\mathcal{H} \geq 8 \), proving the proposition. \(\square \)

2.5. Cohomology. Let \(\mathcal{X} \) denote any collection of subgroups of \(\mathcal{G} \) that is closed under conjugation and under taking subgroups. We will investigate injectivity of the restriction map

\[
\text{res}^G_{\mathcal{X}} : H^k(\mathcal{G}, k[L]) \to \prod_{\mathcal{H} \in \mathcal{X}} H^k(\mathcal{H}, k[L]) .
\]

This map was considered in Proposition 1.4 for \(\mathcal{X} = \mathcal{X}_{k+1} \).

Lemma. The map \(\text{res}^G_{\mathcal{X}} : H^k(\mathcal{G}, k[L]) \to \prod_{\mathcal{H} \in \mathcal{X}} H^k(\mathcal{H}, k[L]) \) is injective if and only if the restriction maps

\[
H^k(\mathcal{G}_m, k) \to \prod_{\mathcal{H} \leq \mathcal{G}_m} \prod_{\mathcal{H} \in \mathcal{X}} H^k(\mathcal{H}, k)
\]

are injective for all \(m \in L \).

Proof. As \(k[\mathcal{G}] \)-module, \(k[L] \) is a permutation module:

\[
k[L] \cong \bigoplus_{m \in \mathcal{G} \setminus L} k[\mathcal{G}/\mathcal{G}_m] ,
\]

where \(k[\mathcal{G}/\mathcal{G}_m] = k[\mathcal{G}] \otimes k[\mathcal{G}_m] k \) and \(\mathcal{G} \setminus L \) is a transversal for the \(\mathcal{G} \)-orbits in \(L \). For each subgroup \(\mathcal{H} \leq \mathcal{G} \),

\[
k[\mathcal{G}/\mathcal{G}_m]|_{\mathcal{H}} \cong \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_m} k[\mathcal{H}/\mathcal{G}_m \cap \mathcal{H}] ;
\]

see [CR, 10.13]. Therefore, \(\text{res}^G_{\mathcal{H}} \) is the direct sum of the restriction maps

\[
H^k(\mathcal{G}, k[\mathcal{G}/\mathcal{G}_m]) \to H^k(\mathcal{H}, k[\mathcal{G}/\mathcal{G}_m]) = \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_m} H^k(\mathcal{H}, k[\mathcal{H}/\mathcal{G}_m \cap \mathcal{H}]) .
\]

By the Eckmann-Shapiro Lemma [Br, III(5.2),(6.2)], \(H^k(\mathcal{G}, k[\mathcal{G}/\mathcal{G}_m]) \cong H^k(\mathcal{G}_m, k) \) and \(H^k(\mathcal{H}, k[\mathcal{H}/\mathcal{G}_m \cap \mathcal{H}]) \cong H^k(\mathcal{G}_m \cap \mathcal{H}, k) \). In terms of these isomorphisms, the above restriction map becomes

\[
\rho_{\mathcal{H},m} : H^k(\mathcal{G}_m, k) \to \bigoplus_{g \in \mathcal{H} \setminus \mathcal{G}/\mathcal{G}_m} H^k(\mathcal{G}_m \cap \mathcal{H}, k)
\]

\[
[f] \mapsto \bigl([h \mapsto f(g^{-1} h g)] \bigr)_g
\]

\]
where \([\ldots]\) denotes the cohomology class of a \(k\)-cocycle and \(h\) stands for a \(k\)-tuple of elements of \(g\mathbb{G}_m \cap \mathcal{H}\). Therefore,

\[
\ker \rho_{\mathcal{H}, m} = \bigcap_{g \in \mathcal{H} \setminus \mathbb{G} / \mathbb{G}_m} \ker \left(\text{res}_{\mathcal{G}_m \cap \mathcal{H}^g} : H^k(\mathcal{G}_m, \mathbb{k}) \to H^k(\mathcal{G}_m \cap \mathcal{H}^g, \mathbb{k}) \right).
\]

Thus, \(\ker \text{res}_{\mathcal{X}}\) is isomorphic to the direct sum of the kernels of the restriction maps

\[
H^k(\mathcal{G}_m, \mathbb{k}) \to \prod_{\mathcal{H} \in \mathcal{X}} H^k(\mathcal{G}_m \cap \mathcal{H}^g, \mathbb{k})
\]

with \(m \in \mathcal{G} \setminus \mathcal{L}\). Finally, by hypothesis on \(\mathcal{X}\), the groups \(\mathcal{G}_m \cap \mathcal{H}^g\) with \(\mathcal{H} \in \mathcal{X}\) are exactly the groups \(\mathcal{H} \in \mathcal{X}\) with \(\mathcal{H} \leq \mathcal{G}_m\). The lemma follows. \(\square\)

Corollary. Let \(\mathbb{k} = \mathbb{Z}/(|\mathcal{G}|)\) and \(k = 1\). Then \(\text{res}_{\mathcal{X}}\) injective if and only if all \(\mathcal{G}_m^{ab}\) \((m \in \mathcal{L})\) are generated by the images of the subgroups \(\mathcal{H} \leq \mathcal{G}_m\) with \(\mathcal{H} \in \mathcal{X}\).

Proof. By the lemma with \(k = 1\), the hypothesis on the restriction map says that all restrictions

\[
H^1(\mathcal{G}_m, \mathbb{k}) \to \prod_{\mathcal{H} \in \mathcal{X}} H^1(\mathcal{H}, \mathbb{k})
\]

are injective. Now, for each \(\mathcal{H} \leq \mathcal{G}\), \(H^1(\mathcal{H}, \mathbb{k}) = \text{Hom}(\mathcal{H}^{ab}, \mathbb{k}) \cong \mathcal{H}^{ab}\), where the last isomorphism holds by our choice of \(\mathbb{k}\). Therefore, injectivity of the above map is equivalent to \(\mathcal{G}_m^{ab}\) being generated by the images of all \(\mathcal{H} \leq \mathcal{G}_m\) with \(\mathcal{H} \in \mathcal{X}\). \(\square\)

3. The Cohen-Macaulay Property

3.1. Continuing with the notation of §2.1, we now turn to the question when the invariant algebra \(\mathbb{k}[L]^{\mathcal{G}}\) is Cohen-Macaulay. Our principal tool will be Proposition 1.4. We remark that the Cohen-Macaulay hypothesis of Proposition 1.4 simplifies slightly in the setting of multiplicative actions: it suffices to assume that \(\mathbb{k}[L]^{\mathcal{G}}\) is Cohen-Macaulay. Indeed, in this case the base ring \(\mathbb{k}\) is also Cohen-Macaulay, because \(\mathbb{k}[L]^{\mathcal{G}}\) is free over \(\mathbb{k}\), and then \(\mathbb{k}[L]\) is Cohen-Macaulay as well; see [BH, Exercise 2.1.23 and Theorems 2.1.9, 2.1.3(b)].

3.2. Base rings. Our main interest is in the case where \(\mathbb{k} = \mathbb{Z}\). As the following lemma shows, if \(\mathbb{Z}[L]^{\mathcal{G}}\) is Cohen-Macaulay then so is \(\mathbb{k}[L]^{\mathcal{G}}\) for any Cohen-Macaulay base ring \(\mathbb{k}\).

Lemma. The following are equivalent:

(a) \(\mathbb{Z}[L]^{\mathcal{G}}\) is Cohen-Macaulay;

(b) \(\mathbb{k}[L]^{\mathcal{G}}\) is Cohen-Macaulay whenever \(\mathbb{k}\) is;
(c) \(\mathbb{k}[L]^G \) is Cohen-Macaulay for \(\mathbb{k} = \mathbb{Z}/(|G|) \);
(d) \(\mathbb{F}_p[L]^G \) is Cohen-Macaulay for all primes \(p \) dividing \(|G| \).

Proof. (a) \(\Rightarrow \) (b): Put \(S = \mathbb{k}[L]^G \) and consider the extension of rings \(\mathbb{k} \hookrightarrow S \). This extension is free; see §2.1. By [BH, Exercise 2.1.23], \(S \) is Cohen-Macaulay if (and only if) \(Q \) [BH, Theorem 2.1.3(b)], it suffices to show that localization of \(S \) is Cohen-Macaulay, where \(p = P \cap \mathbb{k} \). But \(S_{\mathfrak{q}}/pS_{\mathfrak{q}} \) is a localization of \((S/pS)_{\mathfrak{q},0} \cong Q(k/p)[L]^G \); see equation (2.1). Therefore, by [BH, Theorem 2.1.3(b)], it suffices to show that \(Q(k/p)[L]^G \) is Cohen-Macaulay. In other words, we may assume that \(k \) is a field. By [BH, Theorem 2.1.10], we may further assume that \(k = \mathbb{Q} \) or \(k = \mathbb{F}_p \). But equation (2.1) implies that \(Q[L]^G \cong \mathbb{Z}[L]_{\mathfrak{q},0}^G \) and \(\mathbb{F}_p[L]^G \cong \mathbb{Z}[L]^G/(p) \). Since \(\mathbb{Z}[L]^G \) is assumed Cohen-Macaulay, [BH, Theorem 2.1.3] implies that \(Q[L]^G \) and \(\mathbb{F}_p[L]^G \) are Cohen-Macaulay, as desired.

(b) \(\Rightarrow \) (c) is clear.

(c) \(\Rightarrow \) (d): Write \(|G| = \prod_p p^{n_p} \). Then \(k[L] \cong \prod_p \mathbb{Z}/(p^{n_p})[L]^G \) and \(\mathbb{Z}/(p^{n_p})[L]^G \) is a localization of \(k[L]^G \). Therefore, \(\mathbb{Z}/(p^{n_p})[L]^G \) is Cohen-Macaulay, by [BH, Theorem 2.1.3(b)]. If \(n_p \neq 0 \) then it follows from [BH, Theorem 2.1.3(a)] that \(\mathbb{Z}(p)[L]^G \) and \(\mathbb{F}_p[L]^G \cong \mathbb{Z}(p)[L]^G/(p) \) are Cohen-Macaulay.

(d) \(\Rightarrow \) (a): First, (d) implies that \(\mathbb{F}_p[L]^G \) is Cohen-Macaulay for all primes \(p \). For, if \(p \) does not divide \(|G| \) then \(\mathbb{F}_p[L]^G \) is always Cohen-Macaulay; see [BH, Corollary 6.4.6]. Now let \(\mathfrak{p} \) be a maximal ideal of \(\mathbb{Z}[L] \). Then \(\mathfrak{p} \cap \mathbb{Z} = (p) \) for some prime \(p \) and \(\mathbb{Z}[L]_{\mathfrak{p},0}^G \) is a localization of \(\mathbb{Z}[L]^G/(p) = \mathbb{F}_p[L]^G \). Thus, \(\mathbb{Z}[L]_{\mathfrak{p},0}^G/(p) \) is Cohen-Macaulay and [BH, Theorem 2.1.3(a)] further implies that \(\mathbb{Z}[L]_{\mathfrak{p}}^G \) is Cohen-Macaulay. Since, \(\mathfrak{p} \) was arbitrary, (a) is proved.

Since normal rings of (Krull) dimension at most 2 are Cohen-Macaulay, the implication (d) \(\Rightarrow \) (b) of the lemma shows that \(\mathbb{k}[L]^G \) is certainly Cohen-Macaulay whenever \(\mathbb{k} \) is Cohen-Macaulay and \(L \) has rank at most 2.

3.3. **Proof of the Theorem.** We are now ready to prove the Theorem stated in the Introduction. Recall that, for any subgroup \(\mathcal{H} \leq \mathcal{G} \), \(\mathcal{G}^{(2)} \) denotes the subgroup generated by the elements of \(\mathcal{H} \) that act as bireflections on \(L \) or, equivalently, by the subgroups of \(\mathcal{H} \) that belong to \(\mathcal{X}_2 \); see (2.2). Throughout, we assume that \(\mathbb{Z}[L]^G \) is Cohen-Macaulay.

We first show that \(\mathcal{G}_m/\mathcal{G}_m^{(2)} \) is a perfect group for all \(m \in L \). Put \(\mathbb{k} = \mathbb{Z}/(|G|) \). Then \(\mathbb{k}[L]^G \) is Cohen-Macaulay, by Lemma 3.2. Therefore, the restriction \(H^1(\mathcal{G}, \mathbb{k}[L]) \rightarrow \prod_{\mathcal{H} \in \mathcal{X}_2} H^1(\mathcal{H}, \mathbb{k}[L]) \) is injective, by Proposition 1.4; see the remark in §3.1. Corollary 2.5 yields that all \(\mathcal{G}_m^{ab} \) are generated by the images of the subgroups \(\mathcal{H} \leq \mathcal{G}_m \) with \(\mathcal{H} \in \mathcal{X}_2 \). In other words,
each G_m^{ab} is generated by the images of the bireflections in G_m. Therefore,
\[
\left(G_m/G_m^{(2)} \right)^{ab} = 1,
\]
as desired.

Now assume that G acts non-trivially on L. Our goal is to show that some isotropy group G_m is non-perfect. Suppose otherwise. Replacing G by $G/\ker G(L)$ we may assume that $1 \neq G$ acts faithfully on L. Then $\mathcal{X}_k = \{1\}$ for all $k < 8$, by Proposition 2.4. It follows that
\[
k = \inf \{i > 0 \mid H^i(G, \mathbb{k}[L]) \neq 0\} \geq 7.
\]
Indeed, if $k < 7$ then Proposition 1.4 implies that $0 \neq H^k(G, \mathbb{k}[L])$ embeds into $\prod_{i \in \mathbb{X}_{k+1}} H^k(H, \mathbb{k}[L])$ which is trivial, because $\mathcal{X}_{k+1} = \{1\}$. By Lemma 2.5 with $\mathcal{X} = \{1\}$, we conclude that
\[H^i(G_m, \mathbb{k}) = 0 \text{ for all } m \in L \text{ and all } 0 < i < 7.\]

On the other hand, choosing G_m minimal with $G_m \neq 1$, we know by Lemmas 2.3 and 2.4(b) that G_m is isomorphic to the binary icosahedral group $2.A_5$. The cohomology of $2.A_5$ is 4-periodic (see [Br, p. 155]). Hence, $H^3(G_m, \mathbb{k}) \cong H^{-1}(G_m, \mathbb{k}) = \text{ann}_{\mathbb{k}}(\sum_{G_m} \varphi) \cong \mathbb{Z}/(|G_m|) \neq 0.$ This contradiction completes the proof of the Theorem. \hfill \square

3.4. Rational invariance. We now show that the Cohen-Macaulay property of $\mathbb{k}[L]^G$ depends only on the rational isomorphism class of the G-lattice L. Recall that G-lattices L and L' are said to be **rationally isomorphic** if $L \otimes \mathbb{Q} \cong L' \otimes \mathbb{Q}$ as $\mathbb{Q}[G]$-modules. In this section, \mathbb{k} denotes any commutative base ring.

Proposition. If $\mathbb{k}[L]^G$ is Cohen-Macaulay then so is $\mathbb{k}[L']^G$ for any G-lattice L' that is rationally isomorphic to L.

Proof. Assume that $L \otimes \mathbb{Q} \cong L' \otimes \mathbb{Q}$. Replacing L' by an isomorphic copy inside $L \otimes \mathbb{Q}$, we may assume that $L \supseteq L'$ and L/L' is finite. Then $\mathbb{k}[L]$ is finite over $\mathbb{k}[L']$ which in turn is integral over $\mathbb{k}[L]^G$. Therefore, $\mathbb{k}[L]$ is integral over $\mathbb{k}[L']^G$, and hence so is $\mathbb{k}[L]^G$.

We now invoke a ring-theoretic result of Hochster and Eagon [HE] (or see [BH, Theorem 6.4.5]): Let $R \supseteq S$ be an integral extension of commutative rings having a Reynolds operator, that is, an S-linear map $R \to S$ that restricts to the identity on S. If R is Cohen-Macaulay then S is Cohen-Macaulay as well.

To construct the requisite Reynolds operator, consider the truncation map
\[
\pi: \mathbb{k}[L] \to \mathbb{k}[L'], \quad \sum_{m \in L} k_m x^m \mapsto \sum_{m \in L'} k_m x^m.
\]
This is a Reynolds operator for the extension $k[L] \supseteq k[L']$ that satisfies $\pi(g(f)) = g(\pi(f))$ for all $g \in G$, $f \in k[L]$. Therefore, π restricts to a Reynolds operator $k[L]^G \to k[L']^G$ and the proposition follows. \hfill \Box

The proposition in particular allows to reduce the general case of the Cohen-Macaulay problem for multiplicative invariants to the case of effective G-lattices. Recall that the G-lattice L is effective if $L^G = 0$. For any G-lattice L, the quotient L/L^G is an effective G-lattice; this follows, for example, from the fact that L is rationally isomorphic to the G-lattice $L^G \oplus L/L^G$.

Corollary. $k[L]^G$ is Cohen-Macaulay if and only if this holds for $k[L/L^G]^G$.

Proof. By the proposition, we may replace L by $L' = L^G \oplus L/L^G$. But $k[L']^G \cong k[L/L^G]^G \otimes_k k[L]^G$, a Laurent polynomial algebra over $k[L/L^G]^G$. Thus, by [BH, Theorems 2.1.3 and 2.1.9], $k[L]^G$ is Cohen-Macaulay if and only if $k[L/L^G]^G$ is Cohen-Macaulay. The corollary follows. \hfill \Box

3.5. **Remarks and examples.**

3.5.1. **Abelian bireflection groups.** It is not hard to show that if G is a finite abelian group acting as a bireflection group on the lattice L then $\mathbb{Z}[L]^G$ is Cohen-Macaulay. Using Corollary 3.4 and an induction on rank L, the proof reduces to the verification that $\mathbb{Z}[L]^G$ is Cohen-Macaulay for $L = \mathbb{Z}^n$ and $G = \text{diag}(\pm 1, \ldots, \pm 1) \cap \text{SL}_n(\mathbb{Z})$. Direct computation shows that, for $n \geq 2$,

$$\mathbb{Z}[L]^G = \mathbb{Z}[\xi_1, \ldots, \xi_n] \oplus \eta \mathbb{Z}[\xi_1, \ldots, \xi_n]$$

where $\xi_i = x^{e_i} + x^{-e_i}$ is the G-orbit sum of the standard basis element $e_i \in \mathbb{Z}^n$ and η is the orbit sum of $\sum_i e_i = (1, \ldots, 1)$.

It would be worthwhile to try and extend this result to larger classes of bireflection groups. The aforementioned classification of bireflection groups in [GuS] will presumably be helpful in this endeavor.

3.5.2. **Subgroups of reflection groups.** Assume that G acts as a reflection group on the lattice L and let H be a subgroup of G with $[G : H] = 2$. Then H acts as a bireflection group. (More generally, if G acts as a k-reflection group and $[G : H] = m$ then H acts as a km-reflection group; see [L1].) Presumably $\mathbb{Z}[L]^H$ will always be Cohen-Macaulay, but I have no proof. For an explicit example, let $G = S_n$ be the symmetric group on $\{1, \ldots, n\}$ and let $L = U_n$ be the standard permutation lattice for S_n; so $U_n = \bigoplus_{i=1}^n \mathbb{Z} e_i$ with $s(e_i) = e_{s(i)}$ for $s \in S_n$. Transpositions act as reflections on U_n and 3-cycles as bireflections. Let $A_n \leq S_n$ denote the alternating group. To compute $\mathbb{Z}[U_n]^{A_n}$, put $x_i = x^{e_i} \in \mathbb{Z}[U_n]$. Then $\mathbb{Z}[U_n] = \mathbb{Z}[x_1, \ldots, x_n][s_n^{-1}]$, where $s_n = x^{\sum_i e_i} = \prod_i x_i$ is the nth elementary symmetric function, and S_n acts via $s(x_i) = x_{s(i)}$ ($s \in S_n$).
Therefore, $\mathbb{Z}[U_n]^{A_n} = \mathbb{Z}[x_1, \ldots, x_n]^{A_n}[s_n^{-1}]$. The ring $\mathbb{Z}[x_1, \ldots, x_n]^{A_n}$ of polynomial A_n-invariants has the following form; see [S, Theorem 1.3.5]:

$$\mathbb{Z}[x_1, \ldots, x_n]^{A_n} = \mathbb{Z}[s_1, \ldots, s_n] \oplus d\mathbb{Z}[s_1, \ldots, s_n],$$

where s_i is the ith elementary symmetric function and

$$d = \frac{1}{2} (\Delta + \Delta_+)$$

with $\Delta_+ = \prod_{i<j}(x_i + x_j)$ and $\Delta = \prod_{i<j}(x_i - x_j)$, the Vandermonde determinant. Thus,

$$\mathbb{Z}[U_n]^{A_n} = \mathbb{Z}[s_1, \ldots, s_{n-1}, s_n^{\pm 1}] \oplus d\mathbb{Z}[s_1, \ldots, s_{n-1}, s_n^{\pm 1}]$$

This is Cohen-Macaulay, being free over $\mathbb{Z}[s_1, \ldots, s_{n-1}, s_n^{\pm 1}]$.

3.5.3. S_n-lattices

If L is a lattice for the symmetric group S_n such that $\mathbb{Z}[L]^{S_n}$ is Cohen-Macaulay then the Theorem implies that S_n acts as a bireflection group on L, and hence on all simple constituents of $L \otimes_{\mathbb{Z}} \mathbb{Q}$. The simple $\mathbb{Q}[S_n]$-modules are the Specht modules S^λ for partitions λ of n. If $n \geq 7$ then the only partitions λ so that S_n acts as a bireflection group on S^λ are (n), (1^n) and $(n-1, 1)$; this follows from the lists in [Hu] and [W].

The corresponding Specht modules are trivial module, \mathbb{Q}, the sign module \mathbb{Q}^-, and the rational root module $A_{n-1} \otimes_{\mathbb{Z}} \mathbb{Q}$, where $A_{n-1} = \{ \sum_i z_i e_i \in U_n \mid \sum_i z_i = 0 \}$ and U_n is as in §3.5.2. Thus, if $n \geq 7$ and $\mathbb{Z}[L]^{S_n}$ is Cohen-Macaulay then we must have

$$L \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^r \oplus (\mathbb{Q}^-)^s \oplus (A_{n-1} \otimes_{\mathbb{Z}} \mathbb{Q})^t$$

with $s + t \leq 2$. In most cases, $\mathbb{Z}[L]^{S_n}$ is easily seen to be Cohen-Macaulay. Indeed, we may assume $r = 0$ by Corollary 3.4. If $s + t \leq 1$ then S_n acts as a reflection group on L and so $\mathbb{Z}[L]^{S_n}$ is Cohen-Macaulay by [L2]. For $t = 0$ we may quote the last remark in §3.2. This leaves the cases $s = t = 1$ and $s = 0, t = 2$ to consider.

If $s = t = 1$ then add a copy of \mathbb{Q} so that L is rationally isomorphic to $U_n \oplus \mathbb{Z}^-$. Using the notation of §3.5.2 and putting $t = x^{(0_{n,1})} \in \mathbb{Z}[U_n \oplus \mathbb{Z}^-]$ the invariants are:

$$\mathbb{Z}[U_n \oplus \mathbb{Z}^-]^{S_n} = R \oplus R\varphi$$

with $R = \mathbb{Z}[s_1, \ldots, s_{n-1}, s_n^{\pm 1}, t, t^{-1}]$ and $\varphi = \frac{1}{2} (\Delta_+ + \Delta) t + \frac{1}{2} (\Delta_+ - \Delta) t^{-1}$.

If $s = 0$ and $t = 2$ then we may replace L by the lattice $U_n^2 = U_n \oplus U_n$. By Lemma 3.2 $\mathbb{Z}[U_n^2]^{S_n}$ is Cohen-Macaulay precisely if $\mathbb{F}_p[U_n^2]^{S_n}$ is Cohen-Macaulay for all primes $p \leq n$. As in §3.5.2, one sees that $\mathbb{F}_p[U_n^2]^{S_n}$ is a localization of the algebra “vector invariants” $\mathbb{F}_p[x_1, \ldots, x_n, y_1, \ldots, y_n]^{S_n}$. By [K2, Corollary 3.5], this algebra is known to be Cohen-Macaulay for $n/2 < p \leq n$, but the primes $p \leq n/2$ apparently remain to be dealt with.
3.5.4. Ranks \(\leq 4 \). As was pointed out in §3.2, \(\mathbb{Z}[L]^G \) is always Cohen-Macaulay when rank \(L \leq 2 \).

For \(L = \mathbb{Z}^3 \), there are 32 \(\mathbb{Q} \)-classes of finite subgroups \(G \leq \text{GL}_3(\mathbb{Z}) \). All \(G \) are solvable; in fact, their orders divide 48. The Sylow 3-subgroup \(H \leq G \), if nontrivial, is generated by a bireflection of order 3. Thus, \(\mathbb{F}_3[L]^H \) is Cohen-Macaulay, and hence so is \(\mathbb{F}_3[L]^G \). Therefore, by Lemma 3.2, \(\mathbb{Z}[L]^G \) is Cohen-Macaulay if and only if \(\mathbb{F}_2[L]^G \) is Cohen-Macaulay, and for this to occur, \(G \) must be generated by bireflections. It turns out that 3 of the 32 \(\mathbb{Q} \)-classes consist of non-bireflection groups; these classes are represented by the cyclic groups
\[
\left\langle \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix} \right\rangle
\]
of orders 2, 4 and 6 (the latter two classes each split into 2 \(\mathbb{Z} \)-classes). For the \(\mathbb{Q} \)-classes consisting of bireflection groups, Pathak [P] has checked explicitly that \(\mathbb{F}_2[L]^G \) is indeed Cohen-Macaulay.

In rank 4, there are 227 \(\mathbb{Q} \)-classes of finite subgroups \(G \leq \text{GL}_4(\mathbb{Z}) \). All but 5 of them consist of solvable groups and 4 of the non-solvable classes are bireflection groups, the one exception being represented by \(S_5 \) acting on the signed root lattice \(\mathbb{Z}^- \otimes_{\mathbb{Z}} A_4 \). Thus, if the group \(G/G^{(2)} \) is perfect then it is actually trivial, that is, \(G \) is a bireflection group. It also turns out that, in this case, all isotropy groups \(G_m \) are bireflection groups. There are exactly 71 \(\mathbb{Q} \)-classes that do not consist of bireflection groups. By the foregoing, they lead to non-Cohen-Macaulay multiplicative invariant algebras. The \(\mathbb{Q} \)-classes consisting of bireflection groups have not been systematically investigated yet. The searches in rank 4 were done with [GAP].

Acknowledgments. Some of the research for this article was carried out during a workshop in Seattle (August 2003) funded by Leverhulme Research Interchange Grant F/00158/X and during the symposium “Ring Theory” in Warwick, UK (September 2003). The results described here were reported in the special session “Algebras and Their Representations” at the AMS-meeting in Chapel Hill (October 2003). Many thanks to Bob Guralnick for his helpful comments on an earlier version of this article.

REFERENCES

[KW] V. Kac and K. Watanabe, *Finite linear groups whose ring of invariants is a complete intersection,* Bull. Amer. Math. Soc. 6 (1982), 221–223.

