PRIME IDEALS IN FIXED RINGS II

Martin Lorenz, Susan Montgomery*, and L.W. Small*

University of Essen
4300 Essen 1, West Germany

University of Southern California
Los Angeles, CA 90007

University of California, San Diego
La Jolla, CA 92093

Recently there has been some interest in so-called "Additivity Principles" [2] which, for a ring extension $S \subseteq R$ and a prime ideal P of R, relate the Goldie rank of R/P to the Goldie ranks of S/Q, for all primes Q of S which are minimal over $P \cap S$.

In this note, we prove such a theorem for the ring extension $R^G \subseteq R$, where R^G is the fixed subring of a finite group G acting as automorphisms of R, such that $|G|^{-1} \subseteq R$. Our result improves the bound on Goldie ranks obtained in [4].

We also include a few additional remarks on prime ideals in fixed rings.

We first require, form [4], some facts about the relationship between prime ideals in R and R^G. For P a prime ideal of R, let

*The last two authors wish to thank the University of Essen for its hospitality while this work was being done.

449
Theorem A [4, Proposition 4.2] Let R be a ring, and G a finite group acting as automorphisms on R such that $|G|^{-1} \in R$. Then

1) \mathfrak{a} is a set of semiprime ideals of R, and is in one-to-one correspondence with the set of G-prime ideals of R.

2) Any prime Q of R^G is minimal over some unique $I \in \mathfrak{a}$.

3) There are only finitely many primes of R^G minimal over any $I \in \mathfrak{a}$, say Q_1, \ldots, Q_m, where $m \leq |G|$. Moreover, $I = \bigcap_{i=1}^m Q_i$.

Two primes Q_1, Q_2 of R^G are said to be equivalent if they are minimal over the same $I \in \mathfrak{a}$. For properties of this equivalence, see [4, Proposition 3.5]; in particular, equivalent primes have the same height.

We also require the additivity principle mentioned at the beginning. For a ring C, $\text{rk}(C)$ denotes the Goldie rank of C (also called the Goldie dimension).

Theorem B [2, Lemma 3.8]. Let $A \subseteq B$ be Artinian rings with the same unit element. Let P be a prime ideal of B, and let Q_1, \ldots, Q_r be the primes of A which are minimal over $P \cap A$. Then there exist positive integers z_1, \ldots, z_r such that
We are now able to prove our main theorem.

Theorem: Let R be a ring, and G a finite group acting as automorphisms of R with $|G|\cdot R$. Let P be a prime ideal of R, and say that $P \cap R^G = Q_1 \cap Q_2 \cdots \cap Q_m$, where the $\{Q_i\}$ are prime ideals of R^G. If R/P is a Goldie ring, then:

1) R^G/Q_i is a Goldie ring, all $i = 1, \ldots, n$

2) There exist positive integers z_1, \ldots, z_m such that

$$rk(R/P) = \sum_{i=1}^m z_i \cdot rk(R^G/Q_i)$$

proof: Since R/P is Goldie, R/P^G is also Goldie for each $g \in G$, since $R/P \cong R/p^G$. Thus $R = R/ \cap p^G$ is Goldie since it is a subdirect product of the $\{R/p^G\}$. R has an induced G-action, since $\cap p^G$ is G-stable, and moreover, $R^G = \bar{R}^G$ since $|G| \cdot R$ (the mapping $\phi(x) = |G|^{-1} \sum_{g \in G} x^g$ is a projection of R onto R^G). By passing to \bar{R} we may assume that R is Goldie, $P \cap R^G = (0)$, and $(0) = Q_1 \cap \cdots \cap Q_m$, where $\{Q_i\}$ are the minimal primes of R^G.

Now by a theorem of Kharchenko [3], R being Goldie implies that R^G is also Goldie; moreover if T is the set of regular elements of R^G, then the elements of T are regular in R and $Q(R) = RT^{-1} [1]$, where $Q(R)$ is the semi-simple Artinian quotient ring of R.

Since R^G is Goldie and Q_i is a minimal prime, R^G/Q_i is also Goldie, proving 1).
Let $A = Q(R^G)$ and $B = Q(R)$. Since $P \cap T = \emptyset$, PT^{-1} is prime in B and $\text{rk}(B/PT^{-1}) = \text{rk}(R/P)$. Also, $Q_1T^{-1}, \ldots, Q_mT^{-1}$ are precisely the primes of $A = R^{G_1T^{-1}}$, and $\text{rk}(A/Q_1T^{-1}) = \text{rk}(R^G/Q_1)$. The proof is now finished by applying Theorem B to the Artinian rings $A \subseteq B$.

We first give an example to show that some hypothesis about $|G|$ is required.

Example 1: A PI ring R of characteristic $p \neq 0$, and $G \subseteq \text{Aut}(R)$ of order p, and a prime ideal P of R so that R/P is Goldie of rank 3 but $P \cap R^G = Q$ is a prime ideal of R^G of rank 2. Thus the additivity principle does not hold.

proof: Let k be a field of characteristic $p \neq 0$ and let $k[x,y]$ be the commutative polynomial ring over k. Define $\phi : k[x,y] \rightarrow k[x,y]$ by $\phi(y) = x$, $\phi(x) = 0$. Let $B = M_3(k[x,y])$ and let

$$A = \left\{ \begin{pmatrix} a & b \\ xc & d \\ 0 & 0 \end{pmatrix} \bigg| a, b, c, d \in k[x,y] \right\}.$$

Note that $A \subseteq B$ with the same unit element, and that A is prime with $\text{rk}(A) = 2$.

Now let $R = \left\{ \begin{pmatrix} a & b_1 \\ 0 & b_2 \end{pmatrix} \bigg| a \in A, b_1, b_2 \in B \right\}$. Let $g \in \text{Aut}(R)$ be given by conjugation by

$$S = \begin{pmatrix} I_3 & I_3 \\ 0 & I_3 \end{pmatrix} \in R; \text{ since } S^p = I, g \text{ has order } p. \text{ Let } G = \langle g \rangle;$$
then \(R^G = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, a \in A, b \in B \right\} \). Now let \(P = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, a \in A, b \in B \right\} \), a prime ideal of \(R \). \(R/P \simeq B \), which is Goldie of rank 3. However
\(P \cap R^G = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}, b \in B \right\} = Q \), a prime, and \(R^G/Q \simeq A \), which is Goldie of rank 2.

Our next example shows that the conclusions of the theorem do not hold if one begins with a prime \(Q \) of \(R^G \). Moreover, it provides an example of two equivalent primes of \(R^G \) which have different depths (as was noted above, equivalent primes always have the same height).

Example 2: A prime ring \(R \) which is not Goldie, and \(G \subseteq \text{Aut}(R) \) with \(|G|^{-1} \in R \) such that \(R^G \) has two minimal primes \(Q_1, Q_2 \), with \(Q_1 \cap Q_2 = (0) \), such that \(R^G/Q_1 \) is Goldie but \(R^G/Q_2 \) is not. Moreover, \(Q_1 \) is maximal but \(Q_2 \) is not.

proof: Let \(k \) be a field containing a primitive \(n \)th root of 1, say \(\alpha \), for some \(n > 1 \). Let \(V \) be a countable dimensional vector space over \(k \), and let \(R = \text{Hom}_k(V, V) \). Choose a basis \(\{v_1, v_2, \ldots, v_n, \ldots\} \) for \(V \), and define \(T \in R \) by \(Tv_1 = \alpha v_1 \) and \(Tv_i = v_{i-1} \), \(i \geq 2 \). Let \(g \in \text{Aut}(R) \) be defined to be conjugation by \(T \). Then \(G = \langle g \rangle \) has order \(n \), and \(R^G = k v_1 \oplus R' \), where \(R' = \text{Hom}_k(V', V') \) and \(V' \) is the subspace with basis \(\{v_i, i \geq 2\} \).

Let \(Q_1 = (0, R') \) and \(Q_2 = (kv_1, 0) \). Since \(R^G/Q_1 \cong k, Q_1 \) is maximal and \(R^G/Q_1 \) is Goldie. However, \(R^G/Q_2 \cong R' \), which is not Goldie. Finally, let \(S \) denote the socle of \(R' \). Since \(R'/S \) is simple, \(Q = (kv_1, S) \) is a maximal ideal of \(R^G \). Thus \(Q_2 \) is not maximal. \(\square \)
We remark, however, that if $|G|^{-1} \in R$ and Q is a prime ideal of R^G such that for every prime Q_i equivalent to Q, R^G/Q_i is Goldie, then R/P is Goldie for any prime P with $P \cap R^G = \bigcap_{g \in G} P = \bigcap_{C_1 \subseteq Q} Q_i$, and the conclusion of the Theorem holds. For in that case, one may pass to $\tilde{R} = R/\cap P^G$ and $\tilde{R}^G = R^G/\cap Q_i$ as before. Since \tilde{R}^G is Goldie, \tilde{R} is Goldie by [3], and so $\tilde{R}/\tilde{P} \cong R/P$ is Goldie since \tilde{P} is a minimal prime of \tilde{R}.

We close with one final example to illustrate the pathology which can occur when a finite group acts on a non-commutative ring and $|G|^{-1} \notin R$.

Example 3: A prime ring R, and a finite group $G \subseteq \text{Aut}(R)$, such that R has an infinite number of primes P, and $P \cap R^G = (0)$ for all P.

Proof: We use an example of G. Bergman. Let k be a field of characteristic $p \neq 0$, which contains a primitive nth root of 1, say a, for some $n > 1$. Let $k[x,y]$ denote the free algebra in x and y, and let $R = M_2(k[x,y])$. Let G be the group generated by conjugation by $(1 \ x), (1 \ y), \text{and } (a \ 0, 0 \ 1)$. Then $|G| = np^2$, and $R^G = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} \mid a \in k \right\}$. Certainly R has infinitely many primes, as $k[x,y]$ does, and any prime satisfies $P \cap R^G = (0)$.

The situation in the above example cannot occur if either R is commutative or $|G|^{-1} \notin R$, for in those cases G is transitive on the set of primes which have a common intersection with R^G (that is, $P_1 \cap R^G = P_2 \cap R^G$ implies $P_2 = P_1^g$, for some $g \in G$).
References

Received: February 1981