Corrections and Updates for
“Multiplicative Invariant Theory”
Martin Lorenz
2/23/2018

page 18, line 6: \(G \) and \(H \) are interchanged. It should read “Then the \(G \)-module \(\mathbb{Z}[G] \otimes_{\mathbb{Z}[H]} M \) is in fact a \(G \)-lattice; . . .” (Thanks to Robert Fossum.)

page 21, line -1: A backslash is missing in front of “emph”. It should be “The group \(G \) is called \(k \)-reflection group on \(V \) if \(G = R^k(H) \).” (Thanks to Robert Fossum.)

page 60, Table 3.1: The Hironaka decomposition of the invariant algebra \(\mathbb{Z}[L]^G \) for the group \(G \cong S_3 \) (third group in table) is missing the summand \(\mu_2 \mathbb{Z}[\mu_1, \mu_2] \). The correct entry in this row should be: “semigroup algebra \(\mathbb{Z}[\mu_1, \mu_2] \oplus \mu_3 \mathbb{Z}[\mu_1, \mu_2] \oplus \mu_2 \mathbb{Z}[\mu_1, \mu_2] \)”.

page 103, line -1: “\(k \)-reflection” should be replaced by “bireflection”; so
\[
\mathcal{R}^2(\mathcal{H}) = \langle g \in \mathcal{H} \mid g \text{ acts as a bireflection on } L \rangle.
\]

page 126, line 8 and page 127, line 4: The list of “primes” \(p = 47, 112, 223, \ldots \) is wrong as stated; it should be \(p = 47, 113, 233, \ldots \). Thus, on page 127, it should read “In particular, the aforementioned non-rational extensions \(\mathbb{Q}(\text{Cl}_p)/\mathbb{Q} \) (\(p = 47, 113, 233, \ldots \)) are not stably rational either.” (Thanks to Don Passman.)

page 126, lines -9 and -12: \(K \) should be replaced by \(k \) twice: it should read “ . . . Saltman [175] for infinite \(k \ldots \) and “ . . . \(E/F \) of \(k \) with group \(G \ldots \)”.

page 149, line -4: The answer to Problem 2, when stated more generally for \(k \)-reflections, is definitely negative. Alex Zaleskii has shown me the following example. The simple group \(\text{SL}_2(\mathbb{F}_{32}) \) has an irreducible Steinberg module, \(V \), of dimension 32 over \(\mathbb{Q} \). The restriction of \(V \) to the Sylow 2-subgroup of \(\text{SL}_2(\mathbb{F}_{32}) \) is the regular module. Therefore, each involution of \(\text{SL}_2(\mathbb{F}_{32}) \) acts as a 16-reflection. Furthermore, the involutions generate \(\text{SL}_2(\mathbb{F}_{32}) \). On the other hand, if \(g \in \text{SL}_2(\mathbb{F}_{32}) \) is an element of order 31, then its fixed points on \(V \) have dimension 2 and \(\langle g \rangle \) is an isotropy group on \(V \). Thus, this isotropy group is only generated by a 30-reflection.

page 150, line 12: Omit “over \(\overline{\mathbb{Z}} \)”.

page 154, line 5 after Problem 7: Replace \(|G|/r\) by \(r/|G| \) (twice).
Problem 14 (page 159): This has been solved in the affirmative; the reference is:
Now all multiplicative invariant fields of transcendence degree at most 3 are known to be rational over the base field.

Example 8.11.3 (page 122); see also Problem 4 (page 150/1): The Cohen-Macaulay problem for “vector invariants” is resolved (in the positive): the Cohen-Macaulay property follows as a special case of Theorem 1.2 in Blum-Smith and Marques, *When are permutation invariants Cohen-Macaulay over all fields?*, arXiv:1802.06735.