PH.D. COMPREHENSIVE EXAMINATION
ABSTRACT ALGEBRA SECTION

January 1996

Part I. Do three (3) of these problems.

I.1. a) Let \(G \) be a group with a subgroup \(H \) and a normal subgroup \(N \). Prove that \(H \cap N \) is a normal subgroup of \(H \) and that \(H/(H \cap N) \cong HN/N \).

b) Use the result in part (a) to prove that a subgroup \(H \) of a solvable group is solvable.
(Note: A group \(G \) is solvable if there exists a subnormal series \(\{1\} = N_k \triangleleft N_{k-1} \triangleleft \cdots \triangleleft N_2 \triangleleft N_1 \triangleleft N_0 \triangleleft G \), where, for each \(i = 1, \ldots, k \), \(N_{i-1}/N_i \) is abelian.)

I.2. Let \(R \) be an Euclidean domain with unity.

a) Prove that \(R \) is a principal ideal domain.

For \(r \) and \(s \) in \(R \), let \(\langle r, s \rangle = \{ rm + sn \mid m, n \in R \} \)

b) Prove that \(\langle r, s \rangle \) is an ideal of \(R \).

c) Suppose that \(R = Q[x] \) (where \(Q \) represents the field of rational numbers), and that \(r = x^2 - 3x + 2 \) and \(s = x^3 - 9x^2 + 23x - 15 \). Then, by parts (a) and (b), \(\langle r, s \rangle = \langle p \rangle \), for some \(p \in Q[X] \). Find \(p \). (Show all work and justify your answer.)

I.3. Let \(F \) be a field. Then \(F[x] \) is a commutative ring with unity. (You may accept this without proof.)

a) Show that \(F[x] \) is an integral domain but that it cannot be a field.

Let \(E \) be an extension field of \(F \). For \(\alpha \in E \), let \(\phi : F[x] \to E \) be a homomorphism which fixes the elements of \(F \) and which maps \(x \) into \(\alpha \).

b) Describe the kernel of \(\phi \).

c) Prove that if \(\alpha \) is algebraic then the image of \(\phi \) is a subfield of \(E \).

d) For \(F = Q \) (the rationals) and for \(\alpha = \sqrt{2} \), describe the image of \(\phi \) as a subfield of \(R \) (the reals). (I.e., find a basis and a unique representation for each element.)

I.4. Let \(V \) be a finite dimensional vector space with an inner product \(\langle \cdot, \cdot \rangle \). Fix a non-zero vector \(u \) in \(V \) and define a mapping \(T : V \to V \) by \(T(v) = \langle u, v \rangle u \).

a) Show that \(T \) is a linear transformation.

b) Find the characteristic polynomial, eigenvalues, minimal polynomial, and Jordan canonical form of \(T \).

c) If, instead of \(T \), we consider the mapping \(F : V \to V \) given by \(F(v) = \langle u, v \rangle v \), explain why the analogues of the questions asked in part b) are not meaningful for \(F \).
Part II. Do two (2) of these problems.

II.1. a) Find all groups of order 325.
 b) Find all groups of order 22.

II.2. Let A be an $m \times n$ matrix over a field F.
 a) Show that the rank of A is equal to the smallest integer r such that A can be
 factored as $A = BC$ for suitable matrices B and C of sizes $m \times r$ and $r \times n$
 respectively.
 b) Use part (a) to deduce the familiar fact that “row rank = column rank”.

II.3. Let F be a finite field with q elements.
 a) Prove that the product of the non-zero elements of F is -1.
 b) Prove that if q is even then every element of F is a square; and that if q is odd, then
 the set of non-zero squares of F is a subgroup of index 2 of the group of non-zero
 elements of F.