These are equations of the form

\[f(x, u, p) = 0, \]
here f is a scalar function, $x \in \mathbb{R}^n$, $u \in C^1(\mathbb{R}^n)$, and $p = Du$ the gradient of u. These equations can be solved using the theory of systems of 1st order differential equations. This is a self contained presentation showing how to do it.

1. Systems of 1st order ordinary differential equations

The problem we consider in this section is the following. Let $F : (\alpha, \beta) \times \Omega \to \mathbb{R}^n$ be a continuous function, with $\Omega \subset \mathbb{R}^n$ an open domain and (α, β) an interval of real numbers, possibly unbounded. Fix $t_0 \in (\alpha, \beta)$ and $\xi_0 \in \Omega$. We seek for a vector valued function $x(t) = (x_1(t), \cdots, x_n(t))$, defined and continuously differentiable in an interval $[t_0 - b, t_0 + a] \subset (\alpha, \beta)$, for some $a, b > 0$, such that $x(t) \in \Omega$ for all $t \in [t_0 - b, t_0 + a]$, and satisfying the initial value problem

$$(1.1) \quad x'(t) = F(t, x(t)) \quad \text{for all } t_0 - b \leq t \leq t_0 + a,$$

$$(1.2) \quad x(t_0) = \xi_0.$$

This gives a system of n odes with n unknowns.

1.1. Existence of solutions. There are several methods to show existence of solutions to the initial value problem (1.1) and (1.2). We present an elegant method due to Tonelli.

Theorem 1. If F is continuous in $(\alpha, \beta) \times \Omega$ and $|F(t, x)| \leq M$ there, then the initial value problem (1.1) and (1.2) has at least one solution.

Proof. For each k positive integer, and each $t \in [t_0, t_0 + a]$, with $a > 0$ that will be determined in a moment, we define the following sequence of functions:

$$x_k(t) = \begin{cases}
\xi_0, & t_0 \leq t \leq t_0 + \frac{1}{k}a \\
\xi_0 + \int_{t_0}^{t} F(s, x_k(s)) \, ds, & t_0 + \frac{j}{k}a \leq t \leq t_0 + \frac{j + 1}{k}a; \quad j = 1, 2, \cdots, k - 1.
\end{cases}$$

Notice that x_k is defined recursively in the sense that the values of x_k on the interval $[t_0 + \frac{j}{k}a, t_0 + \frac{j + 1}{k}a]$ are defined in terms of the values of x_k on the interval $[t_0 + \frac{j - 1}{k}a, t_0 + \frac{j}{k}a]$.

Since $F(s, x)$ is defined for $s \in (\alpha, \beta)$, we then need $a < \beta - t_0$. We have, when $t_0 + \frac{j}{k}a \leq t \leq t_0 + \frac{j + 1}{k}a$, $1 \leq j \leq k - 1$, and $k > 1$, that

$$(1.3) \quad |x_k(t) - \xi_0| \leq \int_{t_0}^{t - \frac{a}{k}} |F(s, x_k(s))| \, ds \leq M \left(t - \frac{a}{k} - t_0 \right) \leq M \left(\frac{j}{k} \right) \leq Ma \left(\frac{k - 1}{k} \right).$$
If $R \leq \text{dist}(\xi_0, \partial \Omega)$, then open ball $B_R(\xi_0) \subset \Omega$, and if we let

$$0 < a < \min \left\{ \beta - t_0, \frac{\text{dist}(\xi_0, \partial \Omega)}{M} \right\} = A,$$

then we get from (1.3) that $x_k(t) \in \Omega$ for $t_0 \leq t \leq t_0 + a$. The sequence x_k is uniformly Lipschitz and therefore equicontinuous. Indeed,

$$|x_k(t) - x_k(t')| \leq \left| \int_{t - \alpha/k}^{t - a/k} F(s, x_k(s)) \, ds \right| \leq M|t - t'|,$$

for all $t_0 \leq t, t' \leq t_0 + a$. In addition, $x_k(t)$ is uniformly bounded: $|x_k(t)| \leq Ma|\xi_0|$ for all k. Therefore by Arzelá-Ascoli’s theorem, x_k contains a subsequence uniformly convergent in $[t_0, t_0 + a]$ to a function x. Let us denote this subsequence also by x_k. We write

$$x_k(t) = \xi_0 + \int_{t_0}^{t} F(s, x_k(s)) \, ds - \int_{t - \alpha/k}^{t - a/k} F(s, x_k(s)) \, ds := \xi_0 + \int_{t_0}^{t} F(s, x_k(s)) \, ds - A_k(t).$$

We have $|A_k(t)| \leq Ma/k$, and so it converges uniformly to zero in $[t_0, t_0 + a]$ as $k \to \infty$. Since $a < A$, then from (1.3) $x_k(t)$ belongs to the closed ball $B_{Ma}(\xi_0)$ and $Ma < \text{dist}(\xi_0, \partial \Omega)$. Since $F(s, x)$ is uniformly continuous in that ball and $x_k \to x$ uniformly, we get that

$$\int_{t_0}^{t} F(s, x_k(s)) \, ds \to \int_{t_0}^{t} F(s, x(s)) \, ds$$

for each $t \in [t_0, t_0 + a]$. Therefore we obtain that $x(t)$ satisfies the integral equation

$$x(t) = \xi_0 + \int_{t_0}^{t} F(s, x(s)) \, ds$$

for all $t \in [t_0, t_0 + a]$. From the fundamental theorem of calculus $x(t)$ satisfies (1.1) in the interval $[t_0, t_0 + a]$ and also (1.2).

We next construct a solution for $t < t_0$. We use the result before changing the right hand side of the equation and the initial time. Let $G(t, x) = -F(t_0 - t, x)$. The function G is defined for $t_0 - \beta < t < t_0 - \alpha, x \in \Omega$, and satisfies the same hypotheses than F in this new region. Since $t_0 - \beta < 0 < t_0 - \alpha$, applying the previous argument (with base point $t_0 = 0$, i.e., on the interval $[0, t_0 - a]$) there exists a solution $y(t)$, defined in some interval $0 \leq t \leq b$ with b any number satisfying

$$0 < b < \min \left\{ t_0 - \alpha, \frac{\text{dist}(\xi_0, \partial \Omega)}{M} \right\} = B.$$
to the integral equation

\[y(t) = \xi_0 + \int_0^t G(s, y(s)) \, ds, \]

for \(0 \leq t \leq b\). Let \(\bar{x}(t) = y(t_0 - t)\). Then \(\bar{x}(t)\) is defined for \(t_0 - b \leq t \leq t_0\) and satisfies

\[\bar{x}(t) = y(t_0 - t) = \xi_0 - \int_{t_0}^t F(t_0 - s, y(s)) \, ds. \]

Since \(\bar{x}(t_0) = \xi_0\), if we define

\[x^*(t) = \begin{cases} x(t) & \text{for } t_0 \leq t \leq t_0 + a \\ \bar{x}(t) & \text{for } t_0 - b \leq t \leq t_0 \end{cases} \]

we then obtain that \(x^*\) is continuously differentiable in \([t_0 - b, t_0 + a]\) and satisfies there the integral equation

\[x^*(t) = \xi_0 + \int_{t_0}^t F(s, x^*(s)) \, ds \]

and therefore is the desired solution. \(\square\)

1.2. **Uniqueness.** Under the assumptions of Theorem 1 the solution might not be unique. A simple example is the scalar equation \(x' = 3x^{2/3}\) with the initial condition \(x(0) = 0\). Obviously \(x = 0\) is a solution, and given any \(a \leq 0 \leq b\) the function

\[x(t) = \begin{cases} (t-a)^3, & -\infty < t \leq a \\ 0, & a < t < b \\ (t-b)^3, & b \leq t < \infty \end{cases} \]

is a solution.

The following construction illustrates the problem of uniqueness. Suppose there are two solutions \(\varphi_1\) and \(\varphi_2\) to the problem \((1.1)\) and \((1.2)\). Then by integration \((1.4)\)

\[\varphi_i(t) = \xi_0 + \int_{t_0}^t F(s, \varphi_i(s)) \, ds, \quad i = 1, 2. \]

Let \(\Phi(t) = |\varphi_1(t) - \varphi_2(t)|\) and suppose the set \(E = \{t : t_0 < t \leq t_0 + a, \Phi(t) \neq 0\}\) is non empty. Let \(\omega = \inf E\). We have \(\Phi(t) = 0\) for \(t_0 \leq t \leq \omega\) by continuity. Let
\[\Psi(t) = |F(s, \varphi_1(s)) - F(s, \varphi_2(s))| \]. Then we have \(\Psi(t) = 0 \) for \(t_0 \leq t \leq \omega \), and from \((1.4) \)

\[(1.5) \]
\[\Phi(t) \leq \int_{t_0}^{t} \Psi(s) \, ds, \quad \text{for all } t_0 \leq t \leq t_0 + a. \]

Let \(h > 0 \) be small such that \(\omega + h \leq t_0 + a \). Consider
\[\mu = \max\{ \Psi(t) : \omega \leq t \leq \omega + h \}. \]

We claim that \(\mu \neq 0 \). Because if \(\mu = 0 \), then from \((1.5) \) we obtain for \(\omega \leq t \leq \omega + h \) that
\[\Phi(t) \leq \int_{t_0}^{\omega} \Psi(s) \, ds + \int_{\omega}^{t} \Psi(s) \, ds = \int_{\omega}^{t} \Psi(s) \, ds \leq \mu h = 0, \]
and so \(\omega \) would not be the infimum. Then there exists \(\omega < t' \leq \omega + h \) such that \(\mu = \Psi(t') \). From \((1.5) \), \(\Phi(t') \leq \int_{t_0}^{t'} \Psi(s) \, ds \leq \mu h = \Psi(t') h \). That is, for each \(h > 0 \) sufficiently small, we find \(t' \in [t_0, t_0 + a] \) such that
\[|F(t', \varphi_1(t')) - F(t', \varphi_2(t'))| \geq \frac{1}{h} |\varphi_1(t') - \varphi_2(t')| > 0. \]

If the function \(F \) satisfies the Lipschitz condition
\[|F(s, x) - F(s, y)| \leq K|x - y| \]
for \(x, y \in \Omega \) and all \(s \in (\alpha, \beta) \) we obtain a contradiction. Therefore we have uniqueness of the initial value problem when \(F \) is Lipschitz.

Remark 2 (Exercise). Suppose \(F : (\alpha, \beta) \times \Omega \to \mathbb{R}^n \) is such that there exists a function \(g(t) \geq 0 \) continuous in \((\alpha, \beta) \) with \(|F(t, x) - F(t, y)| \leq g(t) |x - y| \) for all \(t \in (\alpha, \beta) \), and \(x, y \in \Omega \). Let \(t_0 \in (\alpha, \beta) \) and \(\xi_0 \in \Omega \). Prove that the initial value problem \(x' = F(t, x), x(t_0) = \xi_0 \) has a unique solution in a neighborhood of \(t_0 \).

We shall prove a uniqueness result due to Osgood.

Theorem 3. Let \(g \) be a continuous function defined in \([0, +\infty) \) non decreasing with \(g(0) = 0, g(u) > 0 \) for \(u > 0 \), and satisfying
\[\int_{0}^{\delta} \frac{1}{g(u)} \, du = +\infty \]
for some \(\delta > 0 \). Suppose \(F(t, x) \) satisfies
\[|F(t, x) - F(t, y)| \leq g(|x - y|) \]
for all \(t \in (\alpha, \beta) \) and for all \(x, y \in \Omega \). Then the solution to \((1.1) \) and \((1.2) \) is unique.
Proof. With the notation in this subsection, suppose $\Phi(t)$ is not zero in $[t_0, t_0 + a]$. Let $M(x) = \max_{t_0 \leq t \leq x} \Phi(t)$. So as before, with $\omega = \inf E$, we have $M(x) > 0$ for $\omega < x \leq t_0 + a$ and so for each such x, there exists $\omega < x_1 \leq x$ such that $M(x) = \Phi(x_1)$. We have from (1.5) and since g is non decreasing that

$$
M(x) = \Phi(x_1) \leq \int_{\omega}^{x_1} \Psi(s) \, ds \leq \int_{\omega}^{x_1} g(\Phi(s)) \, ds
$$

$$
\leq \int_{\omega}^{x} g(\Phi(s)) \, ds \leq \int_{\omega}^{x} g(M(s)) \, ds := h(x).
$$

We have $h(\omega) = 0$, $M(x) \leq h(x)$, and $h'(x) = g(M(x)) \leq g(h(x))$ for $\omega \leq x \leq t_0 + a$. Also $g(M(x)) > 0$ for $x > \omega$. Thus $\frac{h'(x)}{g(h(x))} \leq 1$ in $\omega < x < t_0 + a$. Hence

$$
\int_{\omega}^{t_0 + a} h'(x) \frac{dx}{g(h(x))} \leq (t_0 + a - \omega),
$$

that is,

$$
\int_{0}^{h(t_0 + a)} \frac{1}{g(u)} \, du < \infty
$$

a contradiction, and the uniqueness is then proved. \qed

1.3. Differentiability of solutions with respect to a parameter. We assume $F : (a, \beta) \times \Omega \times (a, b) \to \mathbb{R}^n$, $F = F(t, x, \lambda) = (F_1(t, x, \lambda), \cdots, F_n(t, x, \lambda))$ is continuous and $D_x F_i$ and $(F_i)_{\lambda}$ are also continuous, $1 \leq i \leq n$, where Ω is an open subset of \mathbb{R}^n. We consider the problem

$$
x' = F(t, x, \lambda)
$$

$$
x(t_0) = x_0,
$$

here $t_0 \in (a, \beta)$ and $x_0 \in \Omega$. So the solution $x = x(t, \lambda) = (x_1(t, \lambda), \cdots, x_n(t, \lambda))$ and it is our goal to show that $\partial_{\lambda} x_i(t, \lambda)$ is continuous for $1 \leq i \leq n$.

We have

$$
x(t, \lambda) = x_0 + \int_{t_0}^{t} F(s, x(s, \lambda), \lambda) \, ds,
$$

so

$$
(1.6)
$$

$$
x_i(t, \lambda) - x_i(t, \lambda') = \int_{t_0}^{t} (F_i(s, x(s, \lambda), \lambda) - F_i(s, x(s, \lambda'), \lambda')) \, ds
$$

$$
= \int_{t_0}^{t} \left[D_x F_i(s, \xi, \mu_i) \cdot (x(s, \lambda) - x(s, \lambda')) + (F_i)_{\lambda}(s, \xi, \mu_i)(\lambda - \lambda') \right] \, ds,
$$
1 \leq i \leq n, by the mean value theorem where \(\xi_i \) is an intermediate point between \(x(s, \lambda) \) and \(x(s, \lambda') \), and \(\mu_i \) an intermediate point between \(\lambda \) and \(\lambda' \); \(\lambda \neq \lambda' \). From the continuity assumption on \(D_x F \) and \(F_{\lambda} \) we have that

\[
(1.7) \quad \left| \frac{x(t, \lambda) - x(t, \lambda')}{\lambda - \lambda'} \right| \leq \int_{t_0}^{t} \left(M \left| \frac{x(s, \lambda) - x(s, \lambda')}{\lambda - \lambda'} \right| + A \right) ds,
\]

for some positive constants \(M \) and \(A \) and for all \(t_0 \leq t \leq t_0 + h \) with \(h > 0 \) and for all \(\lambda, \lambda' \) in an interval sufficiently small.

Lemma 4 (Gronwall). Let \(\phi \) be continuous on \([t_0, t_0 + h] , h > 0\) such that

\[
\phi(t) \leq \int_{t_0}^{t} \left(M \phi(s) + A \right) ds,
\]

for \(t \in [t_0, t_0 + h] \) with \(M, A \geq 0 \). Then

\[
\phi(t) \leq A h e^{M(t-t_0)}
\]

for \(t \in [t_0, t_0 + h] \).

Proof. Let \(\psi(t) = \phi(t) e^{M(t-t_0)} \). We have \(\max_{[t_0, t_0 + h]} \psi(t) = \psi(t_1) \) for some \(t_1 \in [t_0, t_0 + h] \). So for \(t \in [t_0, t_0 + h] \)

\[
\psi(t) e^{M(t-t_0)} \leq \int_{t_0}^{t} \left(M \psi(s) e^{M(s-t_0)} + A \right) ds,
\]

and so at \(t = t_1 \)

\[
\psi(t_1) e^{M(t_1-t_0)} \leq \int_{t_0}^{t_1} \left(M \psi(s) e^{M(s-t_0)} + A \right) ds \leq \psi(t_1) \int_{t_0}^{t_1} M e^{M(s-t_0)} ds + A(t_1 - t_0)
\]

\[
= \psi(t_1) (e^{M(t_1-t_0)} - 1) + A(t_1 - t_0)
\]

and we get

\[
\psi(t_1) \leq A(t_1 - t_0) \leq A h
\]

and the lemma follows. \(\square \)

Applying Lemma 4 to (1.7) with \(\lambda, \lambda' \) fixed and \(\lambda \neq \lambda' \), i.e., with \(\phi(t) = \left| \frac{x(t, \lambda) - x(t, \lambda')}{\lambda - \lambda'} \right| \) we obtain

\[
(1.8) \quad z(t, \lambda, \lambda') := \left| \frac{x(t, \lambda) - x(t, \lambda')}{\lambda - \lambda'} \right| \leq A h e^{M(t-t_0)},
\]

uniformly in \(\lambda, \lambda' \) and \(t_0 \leq t \leq t_0 + h \). In particular, this shows that \(x(t, \lambda) \) is continuous in \(\lambda \) for each \(t \).
Let us now consider the linear system in Y

\begin{equation}
Y'_i(t) = D_x F_i(t, x(t, \lambda), \lambda) \cdot Y(t) + (F_i)_\lambda(t, x(t, \lambda), \lambda), \quad 1 \leq i \leq n,
\end{equation}

$Y(t_0) = 0$.

From the assumptions on F, the right hand side of the ode is Lipschitz in the variable Y, and therefore the solution $Y = Y(t, \lambda)$ exists and is unique for t sufficiently close to t_0 and λ in some interval.

We claim that

\begin{equation}
\partial_\lambda x(t, \lambda) = (\partial_\lambda x_1(t, \lambda), \ldots, \partial_\lambda x_n(t, \lambda)) = Y(t, \lambda).
\end{equation}

We have that

\[
Y_i(t, \lambda) = \int_{t_0}^t (D_x F_i(s, x(s, \lambda), \lambda) \cdot Y(s) + (F_i)_\lambda(s, x(s, \lambda), \lambda)) \, ds
\]

and so from \((1.6)\)

\[
x_i(t, \lambda) - x_i(t, \lambda') - Y_i(t, \lambda)
\]

\[
= \int_{t_0}^t \left[D_x F_i(s, \xi_i, \mu_i) \cdot \left(\frac{x(s, \lambda) - x(s, \lambda')}{\lambda - \lambda'} \right) + (F_i)_\lambda(s, \xi_i, \mu_i) \right] \, ds
\]

\[
- \int_{t_0}^t (D_x F_i(s, x(s, \lambda), \lambda) \cdot Y(t, \lambda) + (F_i)_\lambda(s, x(s, \lambda), \lambda)) \, ds
\]

\[
= \int_{t_0}^t \left[D_x F_i(s, \xi_i, \mu_i) \cdot \left(\frac{x(s, \lambda) - x(s, \lambda')}{\lambda - \lambda'} - Y(s, \lambda) \right) \right] \, ds
\]

\[
+ \int_{t_0}^t [(D_x F_i(s, \xi_i, \mu_i) - D_x F_i(s, x(s, \lambda), \lambda) \cdot Y(t, \lambda) + ((F_i)_\lambda(s, \xi_i, \mu_i) - (F_i)_\lambda(s, x(s, \lambda), \lambda))] \, ds.
\]

Set

\[
B_i := (D_x F_i(s, \xi_i, \mu_i) - D_x F_i(s, x(s, \lambda), \lambda) \cdot Y(t, \lambda)) + ((F_i)_\lambda(s, \xi_i, \mu_i) - (F_i)_\lambda(s, x(s, \lambda), \lambda)).
\]

Given $\varepsilon > 0$, by the continuity of $D_x F_i$ and $(F_i)_\lambda$ we have that

\[
|B_i| < \varepsilon, \quad \text{for } 1 \leq i \leq n,
\]

when $|\lambda - \lambda'|$ is sufficiently small. Therefore we obtain

\[
\left| \frac{x(t, \lambda) - x(t, \lambda')}{\lambda - \lambda'} - Y(t, \lambda) \right| \leq \int_{t_0}^t \left(M \left| \frac{x(s, \lambda) - x(s, \lambda')}{\lambda - \lambda'} - Y(s, \lambda) \right| + \varepsilon \right) \, ds
\]

and by Gronwall’s lemma

\[
\left| \frac{x(t, \lambda) - x(t, \lambda')}{\lambda - \lambda'} - Y(t, \lambda) \right| \leq \varepsilon e^{Mh}
\]
when \(|\lambda - \lambda'|\) is sufficiently small, i.e., \(\lambda' \to \lambda\), and so \(\partial_\lambda x(t, \lambda) = Y(t, \lambda)\).

From this we deduce the differentiability of the solution with respect to the initial conditions. Let
\[
x' = F(t, x)
x(t_0) = \lambda = (\lambda_1, \ldots, \lambda_n).
\]
So the solution \(x = x(t, \lambda)\). Let \(Y(t, \lambda) = x(t, \lambda) - \lambda\), so \(x = Y + \lambda\). Then
\[
Y' = x' = F(t, x) = F(t, Y + \lambda) := G(t, Y, \lambda)
\]
\[Y(t_0, \lambda) = 0,\]
and therefore \(Y\) is differentiable with respect to each \(\lambda_i\), \(1 \leq i \leq n\), and so is \(x\).

Remark 5. We show now that the solution \(Y(t, \lambda)\) to the linear system \([1.9]\) is continuous as a function of \(\lambda\). From \([1.10]\) this implies that \(x(t, \lambda)\) is continuously differentiable in \(\lambda\). Let \(D_xF(t, x(t, \lambda), \lambda)\) denote the \(n \times n\) matrix having rows \(D_xF_i(t, x(t, \lambda), \lambda)\), and \(F_\lambda(t, x(t, \lambda))\) the vector with components \((F_\lambda)_i(t, x(t, \lambda))\). Since \(Y(t, \lambda)\) solves \([1.9]\), we have
\[
Y(t, \lambda) = \int_{t_0}^t \{D_xF(s, x(s, \lambda), \lambda) Y(s, \lambda) + F_\lambda(s, x(s, \lambda), \lambda)\} \, ds.
\]
We write
\[
Y(t, \lambda) - Y(t, \lambda_0) = \int_{t_0}^t \{D_xF(s, x(s, \lambda), \lambda) Y(s, \lambda) - D_xF(s, x(s, \lambda_0), \lambda_0) Y(s, \lambda_0)\} \, ds
\]
\[+ \int_{t_0}^t [F_\lambda(s, x(s, \lambda), \lambda) - F_\lambda(s, x(s, \lambda_0), \lambda_0)] \, ds
\]
\[= A + B.
\]
We have
\[
A = \int_{t_0}^t D_xF(s, x(s, \lambda), \lambda) [Y(s, \lambda) - Y(s, \lambda_0)] \, ds
\]
\[+ \int_{t_0}^t \{D_xF(s, x(s, \lambda), \lambda) - D_xF(s, x(s, \lambda_0), \lambda_0)\} Y(s, \lambda_0) \, ds.
\]
From \([1.8]\) \(x(s, \lambda)\) is continuous in \(s\) and \(\lambda\), and since \(D_xF\) is continuous, we get that
\[||D_xF(s, x(s, \lambda), \lambda)|| \leq C_1, \text{ and } ||D_xF(s, x(s, \lambda), \lambda) - D_xF(s, x(s, \lambda_0), \lambda_0)|| < \epsilon\]
for \(\lambda\) close to \(\lambda_0\). Also since \(F_\lambda\) is continuous, we also have
\[|F_\lambda(s, x(s, \lambda), \lambda) - F_\lambda(s, x(s, \lambda_0), \lambda_0)| \leq \epsilon
\]
for \(\lambda \) close to \(\lambda_0 \). Hence
\[
|Y(t, \lambda) - Y(t, \lambda_0)| \leq \int_{t_0}^{t} (C_1 |Y(s, \lambda) - Y(s, \lambda_0)| + C_2 \epsilon) \, ds
\]
for \(\lambda \) close to \(\lambda_0 \) and \(t_0 \leq t \leq t_0 + h \) with \(h \) sufficiently small, and so from Lemma 4 we get
\[
|Y(t, \lambda) - Y(t, \lambda_0)| \leq C_2 \epsilon h e^{C_1(t-t_0)}
\]
for \(t_0 \leq t \leq t_0 + h \) and \(\lambda \) close to \(\lambda_0 \). This proves the desired continuity.

2. Quasi-linear pdes

For simplicity, we shall first consider \(n = 2 \) and the case in which the equation is quasi-linear. In this case the pde has the form
\[
a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u),
\]
where the coefficients \(a, b, c \in C^1(\Omega) \), \(\Omega \subset \mathbb{R}^3 \) open. We think that each point \((x, y, z) \in \Omega \) has assigned a vector \((a, b, c)\), i.e.,
\[
(x, y, z) \mapsto (a(x, y, z), b(x, y, z), c(x, y, z)),
\]
and then the solution \(z = u(x, y) \) describes a surface in \(\mathbb{R}^3 \) whose normal vector \((u_x, u_y, -1)\) is perpendicular to the given vector field. Or in other words, the tangent plane to the surface at each point contains the vector field. The solution to (2.11) will be found using the so-called method of characteristics, that is, finding the solutions of the following system of odes
\[
\begin{align*}
\frac{dx}{dt} &= a(x, y, z), & \frac{dy}{dt} &= b(x, y, z), & \frac{dz}{dt} &= c(x, y, z).
\end{align*}
\]
From the theory of odes and since \(a, b, c \in C^1(\Omega) \), for each point \((x_0, y_0, z_0) \in \Omega \) there exists a unique solution \((x(t), y(t), z(t))\) to the system (2.13) defined for \(|t| < \epsilon\) and satisfying the initial condition \((x(0), y(0), z(0)) = (x_0, y_0, z_0)\). The idea is to prove that these solutions to the pde (2.11) are “union” of characteristic curves, that is, solutions to odes (2.13).

2.1. **Step 1.** Suppose \(z = u(x, y) \) describes a \(C^1 \) surface \(S \) such that is “union” of characteristic curves, then \(u \) solves (2.11). Indeed, given \((x_0, y_0, z_0) \in S \) there is a characteristic curve \(C \) given by \((x(t), y(t), z(t))\) such that \(z(t) = u(x(t), y(t)) \) and \((x(0), y(0), z(0)) = (x_0, y_0, z_0)\). Then \(z'(t) = x'(t)u_x(x(t), y(t)) + y'(t)u_y(x(t), y(t)) \), and letting \(t = 0 \) we get \(c(x_0, y_0, z_0) = a(x_0, y_0, z_0)u_x(x_0, y_0) + b(x_0, y_0, z_0)u_y(x_0, y_0) \). That is, for each \((x_0, y_0, z_0) \in S \), \(u \) solves (2.11).
2.2. Step 2. Suppose \(z = u(x, y) \) is a \(C^1 \) solution to (2.11) and let \(S \) its graph. If \(P_0 = (x_0, y_0, z_0) \in S \) and \(C \) is a characteristic curve passing through \(P_0 \), then \(C \subset S \). Indeed, if \(C \) has equation \((x(t), y(t), z(t)) \) and \((x(0), y(0), z(0)) = P_0 \), then we show that \(z(t) = u(x(t), y(t)) \). Let \(U(t) = z(t) - u(x(t), y(t)) \), then we have
\[
\frac{dU}{dt} = z'(t) - x'(t) u_x(x(t), y(t)) - y'(t) u_y(x(t), y(t)) = c(x(t), y(t), z(t)) - a(x(t), y(t), z(t)) u_x(x(t), y(t)) - b(x(t), y(t), z(t)) u_x(x(t), y(t)) - a(x(t), y(t), U(t) + u(x(t), y(t))) u_x(x(t), y(t)) - b(x(t), y(t), U(t) + u(x(t), y(t))) u_x(x(t), y(t)) := F(U, t).
\]
The function \(U = 0 \) solves the ode \(\frac{dU}{dt} = F(U, t) \) since \(u \) solves (2.11) (notice that \(F(U, t) \) depends on the curve and also of \(u \)). Also \(U(0) = 0 \). Since the coefficients \(a, b, c \) are \(C^1 \), \(u \) is also \(C^1 \), it follows from the mean value theorem and the form of \(F(U, t) \) that \(|F(U, t) - F(V, t)| \leq C |U - V| \), then by the uniqueness theorem for odes it follows that \(U \equiv 0 \) and we are done.

2.3. Cauchy problem. Given a curve \(\Gamma \) parameterized by \((f(s), g(s), h(s))\) we are looking for a solution \(u \) to (2.11) passing through \(\Gamma \), that is, \(h(s) = u(f(s), g(s)) \). Let us assume the curve \(\Gamma \) is \(C^1 \), we want to solve (2.11) in a neighborhood of the point \((x_0, y_0, z_0) = (f(s_0), g(s_0), h(s_0))\). For each point in \(P \in \Gamma \) close to \((x_0, y_0, z_0)\), the idea is to take the characteristic curve passing through \(P \) and then glue all these curves together. This will give the desired solution. More precisely, let \(|s - s_0| < \delta \), take \((f(s), g(s), h(s)) \in \Gamma \), and solve (2.13) with the initial condition \((f(s), g(s), h(s))\). That is, we have a solution to (2.13), called \((x(s, t), y(s, t), z(s, t))\) with \((x(s, 0), y(s, 0), z(s, 0)) = (f(s), g(s), h(s))\), and let us say this solution is defined for all \(|t| < \epsilon \). We then have a transformation \(\Phi(s, t) = (x(s, t), y(s, t)) \), defined for \(|s - s_0| < \delta \) and \(|t| < \epsilon \). The Jacobian matrix of \(\Phi \) is
\[
J_{\Phi}(s, t) = \begin{bmatrix}
\frac{\partial x}{\partial t}(s, t) & \frac{\partial x}{\partial s}(s, t) \\
\frac{\partial y}{\partial t}(s, t) & \frac{\partial y}{\partial s}(s, t)
\end{bmatrix}.
\]

\footnote{If \(F(U, t) \) is Lipschitz in \(U \) (uniformly in \(t \)), then from Theorem 3 the initial value problem \(\frac{dU}{dt} = F(U, t), U(0) = U_0 \) has at most one solution.
At \(s = s_0 \) and \(t = 0 \) we have

\[
J_\Phi(s_0, 0) = \begin{bmatrix}
\frac{\partial x}{\partial t}(s_0, 0) & \frac{\partial x}{\partial s}(s_0, 0) \\
\frac{\partial y}{\partial t}(s_0, 0) & \frac{\partial y}{\partial s}(s_0, 0)
\end{bmatrix} = \begin{bmatrix}
a(x_0, y_0, z_0) & f'(s_0) \\
b(x_0, y_0, z_0) & g'(s_0)
\end{bmatrix}.
\]

If \(\det J_\Phi(s_0, 0) \neq 0 \), then by the inverse function theorem there exists an inverse \(\Phi^{-1}(x, y) = (s, t) \) defined locally and we set

\[
u(x, y) = z(\Phi^{-1}(x, y)).
\]

Every characteristic curve of (2.13) is contained in the graph of \(u \), because

\[
u(x(s, t), y(s, t)) = z(\Phi^{-1}(x(s, t), y(s, t))) = z(s, t),
\]

so by Subsection 2.1 \(u \) solves the pde (2.11). Also from Subsection 2.2 the solution \(u \) is unique. Because if \(u_1 \) and \(u_2 \) are two solutions, then they both contain any characteristic curve passing by each point in \(\Gamma \). So we have proved the following theorem.

Theorem 6. If the coefficients of (2.11) are \(C^1 \) in a neighborhood of \((x_0, y_0, z_0)\) and \(\Gamma \) is a \(C^1 \) curve given by \((f(s), g(s), h(s))\) such that \((f(s_0), g(s_0), h(s_0)) = (x_0, y_0, z_0)\) and

\[
det \begin{bmatrix}
a(x_0, y_0, z_0) & f'(s_0) \\
b(x_0, y_0, z_0) & g'(s_0)
\end{bmatrix} \neq 0,
\]

then there exists a unique solution \(u \) to the pde (2.11) defined in a neighborhood of \((x_0, y_0)\) such that the graph of \(u \) contains \(\Gamma \), i.e., \(h(s) = u(f(s), g(s)) \) for \(|s - s_0| < \delta \) with \(\delta \) sufficiently small.

3. **Degenerate case**

This is when

\[
det \begin{bmatrix}
a(x_0, y_0, z_0) & f'(s_0) \\
b(x_0, y_0, z_0) & g'(s_0)
\end{bmatrix} = 0.
\]

We will show that in this case the Cauchy problem might not have solutions.

We shall prove that if there is a solution \(u \) to the Cauchy problem then this prescribes the value of the tangent to the initial curve \(\Gamma \) when \(s = s_0 \), actually, the initial curve \(\Gamma \) will be characteristic at \(s_0 \). Indeed, if there is a solution \(u \), then we have \(h(s) = u(f(s), g(s)) \) for \(|s - s_0| < \delta \). Differentiating this with respect to
\[s \text{ yields } h'(s) = f'(s)u_x + g'(s)u_y \text{ and since } u \text{ is a solution we also have } c(P_0) = a(P_0)u_x(x_0, y_0) + b(P_0)u_y(x_0, y_0). \] So together with (3.15) we have the system
\[\begin{align*}
 b f' - a g' &= 0 \\
 f' u_x + g' u_y - h' &= 0 \\
 a u_x + b u_y - c &= 0.
\end{align*} \]

If we make \(a \) (second eq)- \(f' \) (third eq) and use the first equation we get \(-a f' + f' c = 0\). Also if we make \(b \) (second eq)- \(g' \) (third eq) and use the first equation we obtain \(b h' - g' c = 0 \). Therefore we obtain the equivalent system
\[\begin{align*}
 b f' - a g' &= 0 \\
 -c f' + a h' &= 0 \\
 -c g' + b h' &= 0.
\end{align*} \]

The tangent vector to \(\Gamma \) at \(s_0 \) is \(\tau = (f'(s_0), g'(s_0), h'(s_0)) \), and if we set
\[A = \begin{bmatrix} b & -a & 0 \\ -c & 0 & a \\ 0 & -c & b \end{bmatrix}, \]

then \(A \tau = 0 \). If \((a, b, c) \) evaluated at \((x_0, y_0, z_0) \) is not zero, then \(\text{rank}(A) = 2 \) and therefore the dimension of the space of solutions of \(A \tau = 0 \) is one and so \(\tau = \lambda (a, b, c) \) evaluated at \((x_0, y_0, z_0) \). Therefore, if there is a solution \(u \), then the tangent to \(\Gamma \) at \(s_0 \) is determined and it must be a multiple of \((a, b, c) \) evaluated at \((x_0, y_0, z_0) \). Consequently, if (3.15) holds, and \((f'(s_0), g'(s_0), h'(s_0))\) and \((a, b, c)\) evaluated at \((x_0, y_0, z_0) \) are not linearly dependent, then there is no solution to the Cauchy problem for the equation (2.11) with the condition \(h(s) = u(f(s), g(s)) \).

We also remark that if the initial curve \(\Gamma \) is characteristic, then the Cauchy problem has infinitely many solutions. Indeed, if \((f(s), g(s), h(s))\) is characteristic and passes through \((x_0, y_0, z_0)\) when \(s = s_0 \), then \(f' = a, g' = b \) and \(h' = c \). Let \(\Gamma = (\bar{f}(s), \bar{g}(s), \bar{h}(s)) \) be defined by \(\bar{f}(s) = \alpha(s - s_0) + x_0, \bar{g}(s) = \beta(s - s_0) + y_0 \) and \(\bar{h}(s) \) is any \(C^1 \) function such that \(\bar{h}(s_0) = z_0 \). So
\[\det \begin{bmatrix} a(x_0, y_0, z_0) & f'(s_0) \\ b(x_0, y_0, z_0) & \bar{g}'(s_0) \end{bmatrix} = \det \begin{bmatrix} a(x_0, y_0, z_0) & \alpha \\ b(x_0, y_0, z_0) & \beta \end{bmatrix} = a\beta - b\alpha. \]

If \(a^2 + b^2 \neq 0 \) at \((x_0, y_0, z_0)\), then we can choose \(\alpha \) and \(\beta \) such that \(a\beta - b\alpha \neq 0 \) and so (2.14) holds and so by Theorem 6 there is a unique solution \(\bar{u} \) containing \(\Gamma \). Since \(\Gamma \) is a characteristic curve, from Subsection 2.2 \(\Gamma \) must be contained in the graph.
of \tilde{u}. Therefore, varying α, β or \tilde{h} we obtain infinitely many curves $\tilde{\Gamma}$ satisfying (2.14) and so infinitely many solutions \tilde{u} to the pde (2.11) all of them containing Γ.

4. Examples

4.1. Example 1. Solve $cu_x + u_y = 0$ with $c=$constant and satisfying $u(x, 0) = h(x)$ where $h \in C^1$. The curve Γ is given by $(s, 0, h(s))$, condition (2.14) is then

$$\begin{vmatrix} c & 1 \\ 1 & 0 \end{vmatrix} = -1.$$

Solve $x' = c$, $y' = 1$, $z' = 0$ with $(x(s, 0), y(s, 0), z(s, 0)) = (s, 0, h(s))$. We get $x(s, t) = s + ct$, $y(s, t) = t$, and $z(s, t) = h(s)$. Inverting yields $t = y$, $s = x - cy$. So the solution is $u(x, y) = h(x - cy)$.

4.2. Example 2. Solve $\beta x u_x + u_y = \beta u$ with $\beta \in \mathbb{R}$ and satisfying $u(x, 0) = h(x)$ where $h \in C^1$. The curve Γ is given by $(s, 0, h(s))$, condition (2.14) is then

$$\begin{vmatrix} \beta x & 1 \\ 1 & 0 \end{vmatrix} = -1.$$

Solve $x' = \beta x$, $y' = 1$, $z' = \beta z$ with $(x(s, 0), y(s, 0), z(s, 0)) = (s, 0, h(s))$. We get $x(s, t) = s e^{\beta t}$, $y(s, t) = t$ and $z(s, t) = h(s) e^{\beta t}$. Inverting yields $t = y$, $s = x e^{-\beta y}$, and so the solution is $u(x, y) = h(x e^{-\beta y}) e^{\beta y}$.

4.3. Example 3. Solve $u_x + u_y = u^2$ satisfying $u(x, 0) = h(x)$ where $h \in C^1$. The curve Γ is given by $(s, 0, h(s))$, condition (2.14) is then

$$\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1.$$

Solve $x' = 1$, $y' = 1$, $z' = z^2$ with $(x(s, 0), y(s, 0), z(s, 0)) = (s, 0, h(s))$. We get $x(s, t) = s + t$, $y(s, t) = t$ and $z(s, t) = -\frac{1}{t - 1/h(s)}$. Inverting yields $t = y$, $s = x - y$, and so the solution is $u(x, y) = -\frac{1}{y - 1/h(x - y)}$.

4.4. **A maximum principle for a first order pde.** Let \(u(x, y) \in C^1(B_1(0)) \) be a solution to the equation

\[
a(x, y)u_x + b(x, y)u_y = -u, \quad \text{in } B_1(0).
\]

Suppose that

\[
a(x, y)x + b(x, y)y > 0 \quad \text{for } x^2 + y^2 = 1.
\]

Then \(u \equiv 0. \)

Proof. Let \(M = \max_{B_1(0)} u \) and \(m = \min_{B_1(0)} u. \) We shall prove that \(M \leq 0 \) and \(m \geq 0. \) If the maximum is attained in the interior, then from the equation \(M = 0. \) Similarly, if the minimum is attained in the interior \(m = 0. \)

Suppose the maximum \(M \) is attained at some point \((x_0, y_0) \) on the boundary. If \(\nu = (\nu_1, \nu_2) \) is any vector such that

\[
\pi/2 < \text{angle}(\nu, (x_0, y_0)) \leq \pi.
\]

The point \((x_0, y_0) + t\nu \in B_1(0)\) for all \(t > 0 \) sufficiently small. Let \(g(t) = u((x_0, y_0) + t\nu). \) Since at \((x_0, y_0)\) the maximum of \(u \) is attained, then

\[
0 \geq g(t) - g(0) = g'(\xi) t = \{\nu_1 u_x((x_0, y_0) + \xi\nu) + \nu_2 u_y((x_0, y_0) + \xi\nu)\} t,
\]

with \(0 \leq \xi \leq t. \) Since \(u \) is \(C^1 \) up to the boundary, letting \(t \to 0^+ \) yields

\[
(4.17) \quad \nu_1 u_x(x_0, y_0) + \nu_2 u_y(x_0, y_0) \leq 0.
\]

By the assumption \(a(x_0, y_0)x_0 + b(x_0, y_0)y_0 = (a(x_0, y_0), b(x_0, y_0)) \cdot (x_0, y_0) > 0, \) that is angle\(((a(x_0, y_0), b(x_0, y_0)), (x_0, y_0)) < \pi/2. \) So \(\nu = -(a(x_0, y_0), b(x_0, y_0)) \) satisfies \((4.16), \) and from \((4.17)\) and the pde we get \(u(x_0, y_0) \leq 0 \) and we are done. The argument to show \(m \geq 0 \) is completely similar, in this case the function \(g \) satisfies \(g(t) - g(0) \geq 0. \)

\[
\square
\]

5. **Fully nonlinear case**

Very beautiful references for this part are the books by Constantin Carathéodory [Car82, Chapter 3], also containing historical references; the wonderful book by Fritz John [Joh82, pp. 19-31] containing also examples and exercises, and the fundamental treatise by Courant and Hilbert [CH62, Vol.2, pp. 75-103]. Another

\[\footnote{This means that the field \((a, b)\) points always towards the outer side of the tangent plane to the boundary of the disc. The result also holds when the disc is replaced by domains having this property.}\]
worthy reference is the book by Sneddon \cite{Sne06, Chapters 1 and 2} for readers interested in finding solutions of many particular 1st order pdes.

We consider an equation of the form

\begin{equation}
F(x, y, u, u_x, u_y) = 0,
\end{equation}

or more generally in any dimensions

\begin{equation}
F(x, u, Du) = 0.
\end{equation}

We will write as before \(p = u_x \) and \(q = u_y \). Suppose we have a twice differentiable solution \(z = u(x) \) to the pde (5.19) and set \(p_i(x) = u_{x_i}(x) \), \(p(x) = D_x u(x) \). Differentiating (5.19) with respect to \(x_j \) yields

\begin{equation}
F_{x_j}(x, u(x), Du(x)) + F_u(x, u(x), Du(x))u_{x_j}(x) + \sum_{i=1}^{n} F_{p_i}(x, u(x), Du(x))u_{x_i x_j}(x) = 0.
\end{equation}

Now consider any \(n \)-dimensional curve \(x = x(t) \), insert it in \(u(x) \) and \(u_{x_j}(x) \) and let \(z(t) = u(x(t)) \) and \(p_j(t) = u_{x_j}(x(t)) \). Differentiating with respect to \(t \) yields

\[\dot{z}(t) = \sum_{i=1}^{n} u_{x_i}(x(t)) \dot{x}_i(t) = \sum_{i=1}^{n} p_i(t) \dot{x}_i(t) \]

and

\[\dot{p}_i(t) = \sum_{j=1}^{n} u_{x_i x_j}(x(t)) \dot{x}_j(t). \]

Suppose now the curve \(x(t) \) is chosen so that

\[\dot{x}_i(t) = F_{p_i}(x(t), u(x(t)), Du(x(t))) = F_{p_i}(x(t), z(t), p(t)) \]
and substituting this into (5.20) yields

\[0 = F_{x_j}(x(t), u(x(t)), Du(x(t))) + F_u(x(t), u(x(t)), Du(x(t)))u_{x_j}(x(t))\]
\[+ \sum_{i=1}^{n} F_{p_i}(x(t), u(x(t)), Du(x(t)))u_{x,x_j}(x(t))\]
\[= F_{x_j}(x(t), u(x(t)), Du(x(t))) + F_u(x(t), u(x(t)), Du(x(t)))u_{x_j}(x(t))\]
\[+ \sum_{i=1}^{n} u_{x,x_j}(x(t))\dot{x}_i(t)\]
\[= F_{x_j}(x(t), u(x(t)), Du(x(t))) + F_u(x(t), u(x(t)), Du(x(t)))u_{x_j}(x(t))\]
\[+ p_j(t)\]
\[= F_{x_j}(x(t), z(t), p(t)) + F_u(x(t), z(t), p(t))p_j(t)\]
\[+ p_j(t).\]

This means

\[p_j(t) = -F_{x_j}(x(t), z(t), p(t)) - F_u(x(t), z(t), p(t))p_j(t).\]

So we obtain the system of \(2n + 1\) odes:

\[\dot{x}(t) = D_pF(x(t), z(t), p(t))\]
\[\dot{p}(t) = -D_xF(x(t), z(t), p(t)) - F_u(x(t), z(t), p(t)) p(t)\]
\[\dot{z}(t) = p(t) \cdot D_pF(x(t), z(t), p(t)).\]

In other words, we have proved that if \(u\) is a \(C^2\) solution of the pde (5.19) and for a \(C^1\) curve \(x(t)\) we set \(z(t) = u(x(t)), p(t) = Du(x(t))\), and \(x(t)\) is chosen so that \(\dot{x}(t) = D_pF(x(t), z(t), p(t))\), then (5.22) and (5.23) are satisfied.

5.1. **Cauchy problem.** Suppose we want to find a solution \(z = u(x, y)\) of the pde (5.18) such that passes through a curve \(\Gamma\) parameterized by \(\Gamma(s) = (f(s), g(s), h(s))\). Assume that \(\Gamma\) is \(C^1\) for \(|s - s_0| < \delta\) and

\[\Gamma(s_0) = (x_0, y_0, z_0).\]
We want to construct u using the system of odes (5.21), (5.22), and (5.23), which in this particular case is the system of five odes in $(x(t), y(t), z(t), p(t), q(t))$

\[
\begin{align*}
\dot{x}(t) &= F_p(x, y, z, p, q) \\
\dot{y}(t) &= F_q(x, y, z, p, q) \\
\dot{z}(t) &= p F_p(x, y, z, p, q) + q F_q(x, y, z, p, q) \\
\dot{p}(t) &= -F_x(x, y, z, p, q) - p F_z(x, y, z, p, q) \\
\dot{q}(t) &= -F_y(x, y, z, p, q) - q F_z(x, y, z, p, q).
\end{align*}
\] (5.24)

As in the quasilinear case, we want to find a curve $(x(s, t), y(s, t), z(s, t))$ satisfying the system of five odes and such that $(x(s, 0), y(s, 0), z(s, 0)) = (f(s), g(s), h(s))$. But in this case we have two more unknowns $p(s, t)$ and $q(s, t)$ and so to solve the system of odes we need to prescribe two additional conditions $p(s, 0) = \phi(s)$ and $q(s, 0) = \psi(s)$. These conditions \(\phi\) and \(\psi\) must be compatible with the first order pde and also with \(\Gamma\). In fact, since the prospective solution $z = u(x, y)$ passes through \(\Gamma\) we must have \(h(s) = u(f(s), g(s))\) and so differentiating with respect to \(s\)

\[h'(s) = u_x(f(s), g(s))f'(s) + u_y(f(s), g(s))g'(s).\]

In addition, the curve must satisfy the pde $F(x, y, z, p, q) = 0$, that is,

\[F(f(s), g(s), h(s), u_x(f(s), g(s)), u_y(f(s), g(s))) = 0.\]

So we need the following compatibility conditions for \(\phi\) and \(\psi\):

\[h'(s) = \phi(s)f'(s) + \psi(s)g'(s)\] (5.25)

\[F(f(s), g(s), h(s), \phi(s), \psi(s)) = 0.\]

In general, there might not be solutions to this system of equations, and if there are solutions they might not be unique. So we assume that there exist p_0, q_0 such that

\[h'(s_0) = p_0f'(s_0) + q_0g'(s_0)\]

\[F(x_0, y_0, z_0, p_0, q_0) = 0,\]

\[\text{Notice the first equation means that the tangent vector } (f'(s), g'(s), h'(s)) \text{ is perpendicular to the vector } (\phi(s), \psi(s), -1). \text{ That is, at a point } (f(s), g(s), h(s)) \text{ on the curve, the plane through this point with normal } (\phi(s), \psi(s), -1) \text{ is tangent to the curve. When } s \text{ moves this tangent plane also moves and describes a ribbon or strip. It is for this reason that a set of functions } f(s), g(s), h(s), \phi(s), \psi(s) \text{ satisfying the first equation is called a strip.}\]
and

\[
\det \begin{bmatrix}
F_p(x_0, y_0, z_0, p_0, q_0) & f'(s_0) \\
F_q(x_0, y_0, z_0, p_0, q_0) & g'(s_0)
\end{bmatrix} \neq 0.
\]

(5.26)

Let \(H(s, p, q) = (H_1(s, p, q), H_2(s, p, q)) = (pf'(s) + qg'(s) - h'(s), F(f(s), g(s), h(s), p, q))\) which is defined for \(|s - s_0| < \delta\) and for \((p, q)\) close to \((p_0, q_0)\). We have \(H(s_0, p_0, q_0) = 0\) and the determinant of the Jacobian matrix \(\frac{\partial(H_1, H_2)}{\partial(p, q)}\) is different from zero at \((s_0, p_0, q_0)\). Then by the implicit function theorem there exist unique \(C^1\) functions \(p = \phi(s), q = \psi(s)\) such that \(H(s, \phi(s), \psi(s)) = 0\) for \(|s - s_0| < \delta\) with \(\delta\) sufficiently small. This means that the system (5.25) can be uniquely solved. Therefore with this choice of \(\phi(s)\) and \(\psi(s)\) let

\[x(s, t), y(s, t), z(s, t), p(s, t), q(s, t)\]

be the solution to the system (5.24) satisfying

\[(x(s, 0), y(s, 0), z(s, 0), p(s, 0), q(s, 0)) = \left(f(s), g(s), h(s), \phi(s), \psi(s)\right).
\]

We first observe that

\[G(s, t) := F(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t)) = 0.
\]

(5.27)

Indeed, from the second equation in (5.25) \(G(s, 0) = 0\). Differentiating \(G(s, t)\) with respect to \(t\) and using the system (5.24) yields

\[
\frac{\partial G}{\partial t} = F_x x_t + F_y y_t + F_z z_t + F_p p_t + F_q q_t
\]

\[= F_x F_p + F_y F_q + F_z (p F_p + q F_q) + F_p (-F_x - p F_z) + F_q (-F_y - q F_z) = 0,
\]

and so (5.27) follows from the fundamental theorem of calculus.

Next and with the aid of \(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t)\) we construct the solution \(z = u(x, y)\) to the 1st order pde. Let us first invert \(x(s, t), y(s, t)\). We have \(x(s_0, 0) = f(s_0)\) and \(y(s_0, 0) = g(s_0)\). Also the Jacobian of the transformation \(\Phi(s, t) = (x(s, t), y(s, t))\) is \(\frac{\partial(x, y)}{\partial(s, t)} = \begin{bmatrix} x_s(s, t) & x_t(s, t) \\ y_s(s, t) & y_t(s, t) \end{bmatrix}\). If \(t = 0\) and \(s = s_0\), then

\[
\begin{bmatrix}
 x_s(s_0, 0) & x_t(s_0, 0) \\
 y_s(s_0, 0) & y_t(s_0, 0)
\end{bmatrix} = \begin{bmatrix} f'(s_0) & F_p(x_0, y_0, z_0, p_0, q_0) \\ g'(s_0) & F_q(x_0, y_0, z_0, p_0, q_0) \end{bmatrix}
\]

which from assumption (5.26) has determinant different from zero. Therefore from the inverse function theorem there is a neighborhood of \((s_0, 0)\) such that \(\Phi\) can be inverted, that is, we can write \((s, t) = \Phi^{-1}(x, y)\) with \(\Phi^{-1}\) a \(C^1\) transformation.
We claim that the desired solution of the 1st order pde is

\[(5.28) \quad u(x, y) = z(\Phi^{-1}(x, y)).\]

From (5.27) we have

\[0 = F(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t))\]
\[= F\left(x(\Phi^{-1}(x, y)), y(\Phi^{-1}(x, y)), z(\Phi^{-1}(x, y)), p(\Phi^{-1}(x, y)), q(\Phi^{-1}(x, y))\right)\]
\[= F\left(x, y, u(x, y), p(\Phi^{-1}(x, y)), q(\Phi^{-1}(x, y))\right),\]

so if we prove that

\[p(\Phi^{-1}(x, y)) = u_x(x, y), \quad q(\Phi^{-1}(x, y)) = u_y(x, y),\]

then \(u\) solves the 1st order pde. Or equivalently we need to show that

\[(5.29) \quad p(s, t) = u_x(x(s, t), y(s, t)), \quad q(s, t) = u_y(x(s, t), y(s, t)),\]

for \(|s - s_0| < \delta\) and \(|t| < \epsilon\). From (5.28) we have

\[z(s, t) = u(x(s, t), y(s, t)),\]

and differentiating we get

\[(5.30) \quad \begin{cases} \frac{\partial z}{\partial t}(s, t) = u_x(x(s, t), y(s, t)) \frac{\partial x}{\partial t}(s, t) + u_y(x(s, t), y(s, t)) \frac{\partial y}{\partial t}(s, t) \\ \frac{\partial z}{\partial s}(s, t) = u_x(x(s, t), y(s, t)) \frac{\partial x}{\partial s}(s, t) + u_y(x(s, t), y(s, t)) \frac{\partial y}{\partial s}(s, t). \end{cases}\]

We claim that

\[(5.31) \quad \begin{cases} \frac{\partial z}{\partial t}(s, t) = p(s, t) \frac{\partial x}{\partial t}(s, t) + q(s, t) \frac{\partial y}{\partial t}(s, t) \\ \frac{\partial z}{\partial s}(s, t) = p(s, t) \frac{\partial x}{\partial s}(s, t) + q(s, t) \frac{\partial y}{\partial s}(s, t). \end{cases}\]

Suppose the claim is proved. Since by assumption (5.26), \(\det \begin{bmatrix} x_s(s_0, 0) & x_t(s_0, 0) \\ y_s(s_0, 0) & y_t(s_0, 0) \end{bmatrix} \neq 0\), the linear system (5.30) has a unique solution for \(|s - s_0| < \delta\) and \(|t| < \epsilon\) and therefore (5.29) follows. So it remains to prove (5.31). From the first three equations in (5.24) the first equation in (5.31) immediately follows. To prove the second equation in (5.31) let

\[r(s, t) := \frac{\partial z}{\partial s}(s, t) - p(s, t) \frac{\partial x}{\partial s}(s, t) - q(s, t) \frac{\partial y}{\partial s}(s, t).\]
We shall prove that \(r \equiv 0 \). First notice that \(r(s,0) = h'(s) - \phi(s)f'(s) + \psi(s)g'(s) = 0 \) by (5.25). On the other hand,
\[
\frac{\partial r}{\partial t} = z_{st} - p_s x_s - px_{st} - q_t y_s - qy_{st} \\
= (z_t - px_t - qy_t)_s + p_s x_t + q_s y_t - p_t x_s - q_t y_s \\
= p_s F_p + q_s F_q + x_s (F_x + F_z p) + y_s (F_y + F_z q) \\
= \frac{\partial G}{\partial s} - F_z (z_s - px_s - qy_s) = -F_z r,
\]
from (5.24) and (5.27). So \(r(s, t) = r(s, 0) \exp \left(- \int_0^t F_z dt \right) = 0 \) and we are done.

It remains to verify that \(h(s) = u(f(s), g(s)) \). But \(x(s, 0) = f(s) \) and \(y(s, 0) = g(s) \) so \(\Phi^{-1}(f(s), g(s)) = (s, 0) \). That is, \(u(f(s), g(s)) = z \left(\Phi^{-1}(f(s), g(s)) \right) = z(s, 0) = h(s) \).

5.2. **Uniqueness.** Notice that the solution to the pde \(F(x, y, u, u_x, u_y) = 0 \) and passing through the curve \(\Gamma \), that is, \(u(f(s), g(s)) = h(s) \) might not be unique. The number of solutions depends on the number of ways we have to complete \(\Gamma \) to a strip \(f(s), g(s), h(s), \phi(s), \psi(s) \), that is, the number of solutions \(\phi \) and \(\psi \) of the system (5.25). However once we choose \(\phi \) and \(\psi \) the solution \(u \) is unique. Notice this amounts to prescribe \(u_x \) and \(u_y \) on \(\Gamma \). As an example of non uniqueness of the Cauchy problem we will show that the equation
\[
\frac{1}{2} \left(u_x^2 + u_y^2 \right) + xu_x + yu_y = u, \quad u(x, 0) = \frac{1}{2}(1 - x^2),
\]
has solutions
\[
u(x, y) = \pm y + \frac{1}{2}(1 - x^2).
\]
In this case we have \(F(x, y, z, p, q) = \frac{1}{2}(p^2 + q^2) + xp + yq - z \), and so the system (5.24) becomes
\[
\begin{align*}
\dot{x}(t) &= x + p \\
\dot{y}(t) &= y + q \\
\dot{z}(t) &= p(x + p) + q(y + q) \\
\dot{p}(t) &= 0 \\
\dot{q}(t) &= 0.
\end{align*}
\]
The curve \(\Gamma \) is \((s, 0, \frac{1}{2}(1 - s^2)) \) and then the compatibility conditions (5.25) in this case are
\[
-s = \phi(s), \quad \frac{1}{2} \left(\phi(s)^2 + \psi(s)^2 \right) + s\phi(s) - \frac{1}{2}(1 - s^2) = 0,
\]
that is,\[\phi(s) = -s, \quad \psi(s) = \pm 1.\]

So \(p(s, t) = -s,\) and \(q(s, t) = \pm 1.\) Also the Jacobian condition \((5.26)\) holds because
\[
\begin{vmatrix}
p + x & 1 \\
q + y & 0
\end{vmatrix} = -(y + q)
\]
which at \(q = \pm 1\) and \(y = 0\) is different from zero. Next we need to solve \(\dot{x} = x - s,\)
\(\dot{y} = y + s\) with initial conditions \(x(s, 0) = s\) and \(y(s, 0) = 0,\) which yields \(x(s, t) = s\)
and \(y(s, t) = \pm(e^t - 1).\) Then \(\dot{z} = e^t\) and so \(z(s, t) = e^t - \frac{1}{2} - \frac{1}{2}s^2.\) Therefore \(s = x\) and
\(\pm y + 1 = e^t.\) So
\[
u(x, y) = \pm y + 1 - \frac{1}{2} - \frac{1}{2}x^2 = \pm y + \frac{1}{2}(1 - x^2).
\]

5.3. Solution of the eikonal equation. The eikonal equation in dimension two when the index of refraction is constant is given by
\[
c^2((u_x)^2 + (u_y)^2) = 1,
\]
where \(c\) is a constant. Therefore \(F(x, y, z, p, q) = \frac{1}{2}(c^2(p^2 + q^2) - 1),\) (written in this way for convenience in the calculations). The system \((5.24)\) then becomes
\[
\begin{align*}
\dot{x}(t) &= c^2 p \\
\dot{y}(t) &= c^2 q \\
\dot{z}(t) &= c^2(p^2 + q^2) \\
\dot{p}(t) &= 0 \\
\dot{q}(t) &= 0.
\end{align*}
\]

Let us fix an initial curve \(\Gamma = (f(s), g(s), h(s))\) and let us complete it to a strip by adding \(\phi(s)\) and \(\psi(s).\) Then the compatibility conditions \((5.25)\) become
\[
h'(s) = \phi(s)f'(s) + \psi(s)g'(s), \quad \phi(s)^2 + \psi(s)^2 = c^{-2}.
\]
This imply that \(h'(s)^2 = \left(\phi(s)g'(s) - (f'(s), g'(s))\right)^2 \leq |\phi(s), \psi(s)|^2 \leq c^{-2} (f'(s)^2 + g'(s)^2).\) That is, there are no real solutions \(\phi\) and \(\psi\) if
\[
h'(s)^2 > c^{-2} \left(f'(s)^2 + g'(s)^2\right).
\]

\(^4u(x, y) = \text{constant represent the "wave fronts", that is, if} t \text{ represents time, then the collection of all (x, y) such that} u(x, y) = t \text{ is the wave front. The orthogonal trajectories to these level curves are the trajectories of the light rays. In the general case,} c^2 \text{ is replaced by a function } 1/n(x, y) \text{ where} n(x, y) \text{ is the refractive index of the media at the point (x, y).} \)
So if $h'(s)^2 \leq c^{-2}(f'(s)^2 + g'(s)^2)$, then there are two pairs of solutions $\phi(s), \psi(s)$, (the line intersects the circle $a^2 + b^2 = c^{-2}$ in two points).

Suppose the curve Γ lies on the plane x, y, that is, $\Gamma = (f(s), g(s), 0)$. Clearly in this case, the compatibility condition has two pairs of solutions (ϕ, ψ) and $(-\phi, -\psi)$. Solving the system of odes yields

$$
x(s, t) = f(s) + c^2 t \phi(s), \quad y(s, t) = g(s) + c^2 t \psi(s), \quad z(s, t) = t,$$

$$p(s, t) = \phi(s), \quad q(s, t) = \psi(s).$$

Condition (5.26) reads in this case

$$\det \begin{bmatrix} c^2 \phi(s) & f'(s) \\ c^2 \psi(s) & g'(s) \end{bmatrix} = c^2 \left(\phi(s)g'(s) - \psi(s)f'(s) \right).$$

From the compatibility conditions $0 = \phi(s)f'(s) + \psi(s)g'(s)$, $\phi(s)^2 + \psi(s)^2 = c^{-2}$. If we assume that $f'(s)^2 + g'(s)^2 > 0$, then $\phi(s)g'(s) - \psi(s)f'(s) \neq 0$. Therefore the map $(s, t) \mapsto (f(s) + c^2 t \phi(s), g(s) + c^2 t \psi(s))$ is invertible and the solution u can be found with the inverse Φ^{-1} of this map setting $u(x, y) = z(\Phi^{-1}(x, y))$.

5.4. Higher dimensional case.

Now with the same method we can solve the equation

$$F(x, u, Du(x)) = 0.$$

We write $p = Du(x)$ and $z = u$ and the Cauchy problem now is to find an n-dimensional surface $z = u(x)$ passing through an $(n-1)$-dimensional manifold Γ parameterized by

$$\Gamma(s_1, \ldots, s_{n-1}) = (f_1(s_1, \ldots, s_{n-1}), \ldots, f_n(s_1, \ldots, s_{n-1}), h(s_1, \ldots, s_{n-1}))$$

with $\Gamma(s^0_1, \ldots, s^0_{n-1}) = (x^0_1, \ldots, x^0_n, z^0) = P_0$ (we set $s_0 = (s^0_1, \ldots, s^0_{n-1}), s = (s_1, \ldots, s_{n-1})$, and $x_0 = (x^0_1, \ldots, x^0_n)$). We then need to construct n-functions

$$\phi_1(s_1, \ldots, s_{n-1}), \ldots, \phi_n(s_1, \ldots, s_{n-1}),$$

compatible with the curve Γ and the equation. That is, in analogy with (5.25), we need

$$\frac{\partial h}{\partial s_i} = \sum_{j=1}^n \phi_j \frac{\partial f_j}{\partial s_i}, \quad i = 1, \ldots, n;$$

and

$$F(f_1, \ldots, f_n, h, \phi_1, \ldots, \phi_n) = 0.$$
To solve this system of equation we assume as before the existence of a point $p_0 = (p_1^0, \cdots, p_n^0)$ such that

$$\frac{\partial h}{\partial s_i}(s_0) = \sum_{j=1}^{n} p_j^0 \frac{\partial f_j}{\partial s_i}(s_0), \quad i = 1, \cdots, n;$$

and

$$F(f_1(s_0), \cdots, f_n(s_0), h(s_0), p_1^0, \cdots, p_n^0) = 0,$$

and in analogy with condition (5.26), we also assume

$$\det \left[\begin{array}{ccc} F_{p_1}(x_0, z_0, p_0) & \frac{\partial f_1}{\partial s_1}(s_0) & \cdots & \frac{\partial f_1}{\partial s_{n-1}}(s_0) \\ \vdots & \vdots & \ddots & \vdots \\ F_{p_n}(x_0, z_0, p_0) & \frac{\partial f_n}{\partial s_1}(s_0) & \cdots & \frac{\partial f_n}{\partial s_{n-1}}(s_0) \end{array} \right] \neq 0.$$

Then as in the three dimensional case, by the implicit function theorem we obtain the desired functions $\phi_1(s_1, \cdots, s_{n-1}), \cdots, \phi_n(s_1, \cdots, s_{n-1})$. With these functions as initial conditions, we solve the system of odes (5.21), (5.22) and (5.23) obtaining the solutions

$$x(s, t), z(s, t), p(s, t)$$

such that $(x(s, 0), z(s, 0), p(s, 0)) = (f_1(s), \cdots, f_n(s), h(s), \phi(s), \cdots, \phi_n(s))$. Now the map $(s, t) \mapsto x = x(s, t)$ has an inverse $\Phi^{-1}(x) = (s, t)$ and the solution u is given by

$$u(x) = z(\Phi^{-1}(x)).$$

6. A transversality problem

Suppose that in a domain of \mathbb{R}^3 we have a C^1 vector field

$$(x, y, z) \mapsto F(x, y, z) = (a(x, y, z), b(x, y, z), c(x, y, z)).$$

We seek for a C^2 surface in \mathbb{R}^3 given by $u(x, y, z) = 0$ such that at each point the normal to this surface is parallel to (a, b, c), that is, the surface is transversal to the vector field at each point. That is, there is function $\lambda(x, y, z)$ such that

$$(u_x(x, y, z), u_y(x, y, z), u_z(x, y, z)) = \lambda(x, y, z)(a(x, y, z), b(x, y, z), c(x, y, z)).$$

We shall prove that the existence of such a surface implies that

$$F \cdot (D \times F) = 0.$$
Indeed, we have

\[
\begin{aligned}
&u_x = \lambda a \\
&u_y = \lambda b \\
&u_z = \lambda c
\end{aligned}
\]

Since \(u \) is \(C^2 \), \(u_{xy} = u_{yx} \), \(u_{xz} = u_{zx} \), \(u_{zy} = u_{yz} \), and using the equations we get

\[
\begin{aligned}
&\lambda (a_y - b_x) = \lambda_x b - \lambda_y a \\
&\lambda (b_z - c_y) = \lambda_y c - \lambda_z b \\
&\lambda (a_z - c_x) = \lambda_x c - \lambda_z a
\end{aligned}
\]

Multiplying the first equation by \(c \), the second by \(a \), the third by \(-b\) and adding the resulting equations we obtain

\[
\lambda c(a_y - b_x) + \lambda a(b_z - c_y) - \lambda b(a_z - c_x) = 0,
\]

and we are done.

7. The Legendre transform

We work in dimension three, the extension to other dimensions is straightforward. A surface \(S \) in 3d can be described by a function \(z = u(x, y) \). Suppose \(u \) is differentiable in a domain \(D \subset \mathbb{R}^2 \), that is, the surface has a tangent plane at each point \((x, y) \in D \) having equation, in the variables \(x', y', z' \),

\[
z' = u(x, y) + u_x(x, y)(x' - x) + u_y(x, y)(y' - y),
\]

that is

\[
(7.32) \quad - z' + u_x(x, y)x' + u_y(x, y)y' = -u(x, y) + u_x(x, y)x + u_y(x, y)y.
\]

This means that we can describe the surface \(S \) be prescribing the tangent plane at each point, and think of the surface as the envelope of the family of tangent planes, that is, prescribing \(u_x(x, y), u_y(x, y) \) and \(-u(x, y) + u_x(x, y)x + u_y(x, y)y\), we get the equation of the tangent plane at each point by means of \((7.32)\). Suppose that \(\nabla u(x, y) = (u_x(x, y), u_y(x, y)) \) maps \(D \) into \(\Omega \) and is bijective. Then there is an inverse map \(\Phi : \Omega \rightarrow D \) with

\[
\Phi(\xi, \eta) = (\phi(\xi, \eta), \psi(\xi, \eta)),
\]
and so \(u_x(\phi(\xi, \eta), \psi(\xi, \eta)) = \xi \) and \(u_y(\phi(\xi, \eta), \psi(\xi, \eta)) = \eta \). Suppose in addition, that the map \(\Phi \) is differentiable in the domain \(\Omega \).

Let us define the function

\[(7.33) \quad w(\xi, \eta) = -u(x, y) + x\xi + y\eta, \text{ with } x = \phi(\xi, \eta), \quad y = \psi(\xi, \eta).\]

The differentiating \(w \) with respect to \(\xi \) yields

\[
w_\xi(\xi, \eta) = -u_x(\phi(\xi, \eta), \psi(\xi, \eta))\phi_\xi(\xi, \eta) - u_y(\phi(\xi, \eta), \psi(\xi, \eta))\psi_\xi(\xi, \eta)
+ \phi_\xi(\xi, \eta)\xi + \phi(\xi, \eta) + \psi_\xi(\xi, \eta)\eta
= -u_x(\phi(\xi, \eta), \psi(\xi, \eta))\phi_\xi(\xi, \eta) - u_y(\phi(\xi, \eta), \psi(\xi, \eta))\psi_\xi(\xi, \eta)
+ \phi_\xi(\xi, \eta)\xi + \phi(\xi, \eta) + \psi_\xi(\xi, \eta)\eta
= -\xi\phi_\xi(\xi, \eta) - \eta\psi_\xi(\xi, \eta)
+ \phi_\xi(\xi, \eta)\xi + \phi(\xi, \eta) + \psi_\xi(\xi, \eta)\eta = \phi(\xi, \eta).
\]

Analogously, differentiating \(w \) with respect to \(\eta \) yields

\[
w_\eta(\xi, \eta) = \psi(\xi, \eta).
\]

Therefore the gradient of the function \(w \) defined by \(7.33\) is the inverse of the gradient of \(\nabla u \), i.e.,

\[(7.34) \quad \nabla u(\nabla w(\xi, \eta)) = (\xi, \eta); \text{ and } \nabla w(\nabla u(x, y)) = (x, y),\]

for \((\xi, \eta) \in \Omega \) and \((x, y) \in D \).

On the other hand, it we have a function \(w(\xi, \eta) \), differentiable in \(\Omega \) with gradient that is bijective from \(\Omega \) to \(D \), and with inverse map from \(D \) to \(\Omega \) also differentiable in \(D \), then the function \(u \) defined by \(7.33\) satisfies \(7.34\).

If we assume that \(u \in C^2(D) \), and the Jacobian of the map \(\nabla u(x, y) = (u_x(x, y), u_y(x, y)) \) is not zero at a point \((\bar{x}, \bar{y}) \in D\), then by the inverse function theorem there exist open sets \(U \) and \(V \) such that \(\nabla u \) is an homomorphism from \(U \) onto \(V \), with \(U \) neighborhood of \((\bar{x}, \bar{y}) \) and \(V \) neighborhood of \(\nabla u(\bar{x}, \bar{y}) \). In addition, the inverse map \(\Phi(\xi, \eta) = (\phi(\xi, \eta), \psi(\xi, \eta)) \) is differentiable in \(V \) and satisfies

\[
\Phi'(\nabla u(x, y))(\nabla u)'(x, y) = Id,
\]

that is,

\[
\begin{bmatrix}
\phi_\xi(\nabla u(x, y)) & \phi_\eta(\nabla u(x, y)) \\
\psi_\xi(\nabla u(x, y)) & \psi_\eta(\nabla u(x, y))
\end{bmatrix}
\begin{bmatrix}
u_{xx}(x, y) & u_{xy}(x, y) \\
u_{xy}(x, y) & u_{yy}(x, y)
\end{bmatrix}
= \begin{bmatrix}1 & 0 \\
0 & 1\end{bmatrix}.
\]

\footnote{Of course, by the inverse function theorem if the Jacobian of \(\nabla u \) is not zero in \(D \), then \(\nabla u \) can be locally inverted. But this requires existence of second derivatives of \(u \), which we do not want to assume.}
for all \((x, y) \in U\). Since \(\phi = w_\xi\) and \(\psi = w_\eta\), we obtain the formula

\[
\begin{bmatrix}
w_\xi \xi (\nabla u(x, y)) & w_\xi \eta (\nabla u(x, y)) \\
w_\eta \xi (\nabla u(x, y)) & w_\eta \eta (\nabla u(x, y))
\end{bmatrix}
\begin{bmatrix}
x_{xx}(x, y) & x_{xy}(x, y) \\
x_{xy}(x, y) & y_{yy}(x, y)
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

Therefore

\[
\begin{bmatrix}
w_\xi \xi (\nabla u(x, y)) & w_\xi \eta (\nabla u(x, y)) \\
w_\eta \xi (\nabla u(x, y)) & w_\eta \eta (\nabla u(x, y))
\end{bmatrix} = \begin{bmatrix} u_{xx}(x, y) & u_{xy}(x, y) \\ u_{xy}(x, y) & u_{yy}(x, y) \end{bmatrix}^{-1}
\]

\[
= \frac{1}{\det D^2 u(x, y)} \begin{bmatrix} y_{yy}(x, y) & -u_{xy}(x, y) \\ -u_{xy}(x, y) & u_{xx}(x, y) \end{bmatrix},
\]

for all \((x, y) \in U\).

References

