1. Let \(a < b, c < d \). Define
\[
f(x) = \begin{cases}
ax \sin \frac{1}{x} + bx \cos \frac{1}{x}, & \text{for } x > 0 \\
0, & \text{for } x = 0 \\
cx \sin \frac{1}{x} + dx \cos \frac{1}{x}, & \text{for } x > 0.
\end{cases}
\]
Calculate \(D^- f, D^+ f, D_- f, D_+ f \) at \(x = 0 \).

2. Let \(f \) be a continuous function in \([-1,2]\). Given \(0 \leq x \leq 1 \), and \(n \geq 1 \) define the sequence of functions
\[
f_n(x) = \frac{n}{2} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(t) \, dt.
\]
Show that \(f_n \) is continuous in \([0,1]\) and \(f_n \) converges uniformly to \(f \) in \([0,1]\).

3. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be a uniformly bounded sequence of functions. Show that for each countable subset \(S \subset \mathbb{R} \) there exists a subsequence of \(f_n \) which converges in \(S \).
Hint: select the subsequence by using a diagonal process

4. Let \(f_n \) be absolutely continuous functions in \([a,b]\), \(f_n(a) = 0 \). Suppose \(f'_n \) is a Cauchy sequence in \(L^1([a,b]) \). Show that there exists \(f \) absolutely continuous in \([a,b]\) such that \(f_n \to f \) uniformly in \([a,b]\).

5. Let \(f_n(x) = \cos(nx) \) on \(\mathbb{R} \). Prove that there is no subsequence \(f_{n_k} \) converging uniformly in \(\mathbb{R} \).

6. Let \(f_1, \ldots, f_k \) be continuous real valued functions on the interval \([a,b]\). Show that the set \(\{f_1, \ldots, f_k\} \) is linearly dependent on \([a,b]\) if and only if the \(k \times k \) matrix with entries
\[
\langle f_i, f_j \rangle = \int_a^b f_i(x) f_j(x) \, dx
\]
has determinant zero.

7. Let \(f : [0, +\infty) \to \mathbb{R} \) be continuously differentiable with compact support in \([0, +\infty)\); and \(0 < a < b < \infty \). Prove that
\[
\int_0^\infty \frac{f(bx) - f(ax)}{x} \, dx = -f(0) \ln(b/a).
\]

8. Find all the values of \(p \) such that the integral
\[
\int_0^\infty \int_0^{\pi/2} e^{-xy} \sin \theta \, y \, dx \, dy
\]
converges.

9. If \(E \subset [0,1] \) is a measurable set such that \(|E \cap I| \geq \alpha|I| \) for some \(\alpha > 0 \) and for all intervals \(I \subset [0,1] \), then \(|E| = 1 \).
10. If $F \subset \mathbb{R}$ is closed and $\delta(x) = \text{dist}(x, F)$, then $\delta(x + y) \leq |y|$ for all $x \in F$. Moreover, $\frac{\delta(x + y)}{|y|} \to 0$ as $|y| \to 0$ for a.e. $x \in F$.

11. If $f : [a, b] \to \mathbb{R}$ is absolutely continuous, then $|f(E)| = 0$ for all $E \subset [a, b]$ with $|E| = 0$.

12. Let $\alpha > 0$ and H_α be the Hausdorff outer measure in \mathbb{R}^n. Given $A \subset \mathbb{R}^n$ and $t > 0$, let $\delta_t A = \{tx : x \in A\}$. Prove that $H_\alpha(\delta_t A) = t^\alpha H_\alpha(A)$.

13. Prove that

 1. $H_\alpha(\mathbb{R}^n) = +\infty$ for all $0 < \alpha \leq n$.

 2. if $\alpha \leq \beta$, then $H_\alpha(A) \geq H_\beta(A)$ for all $A \subset \mathbb{R}^n$.

14. Prove that the Hausdorff measure is not σ-finite for $0 < \alpha < n$.

15. Prove that the Hausdorff dimension of the set A equals $\dim_H(A) = \inf\{\alpha : H_\alpha(A) < +\infty\} = \sup\{\alpha : H_\alpha(A) = +\infty\}$, and $\dim_H(\bigcup_{j=1}^\infty A_j) = \sup_j \dim_H(A_j)$.

16. Determine all values of p such that $\lim_{x \to 0} \frac{\sin(|\sin x|^p)}{x}$ exists and calculate its value.

17. Show that the series $\sum_{n=1}^{\infty} (\cos(1/n))^{n^2}$ diverges.

 HINT: $\cos 1/n = \sqrt{1 - (\sin 1/n)^2}$, $0 \leq \sin 1/n \leq 1/n$.

18. Let $f_n : \mathbb{R} \to \mathbb{R}$ be a sequence of equicontinuous functions. Prove that the set

 $\{x \in \mathbb{R} : \{f_n(x)\} \text{ is a Cauchy sequence}\}$

 is closed.

19. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be continuous with compact support. Define the following multiplication:

 $(x, y, t) \circ (x_0, y_0, t_0) = (x + x_0, y + y_0, t + t_0 + xy_0 - yx_0)$. Prove that

 $$\int_{\mathbb{R}^3} f((x, y, t) \circ (x_0, y_0, t_0)) \, dxdydt = \int_{\mathbb{R}^3} f(x, y, t) \, dxdydt$$

 for all $(x_0, y_0, t_0) \in \mathbb{R}^3$.

20. Let $f : [0, 1] \to \mathbb{R}$ be continuous and let $g_n(x) = x^n f(x)$ for $0 \leq x \leq 1$. Prove that g_n converges uniformly in $[0, 1]$ iff $f(1) = 0$.

21. Let f be non-negative and measurable on $[0, 1]$. Prove that

 $$\int_0^1 \int_x^y f(x) f(y) f(z) \, dz \, dy \, dx = \frac{1}{3!} \left(\int_0^1 f(x) \, dx \right)^3.$$
22. An ellipsoid in \(\mathbb{R}^n \) centered at \(x_0 \) is a set of the form
\[
E = \{ x \in \mathbb{R}^n : \langle A(x - x_0), x - x_0 \rangle \leq 1 \}
\]
where \(A \) in an \(n \times n \) positive definite symmetric matrix and \(\langle , \rangle \) denotes the standard Euclidean product. Prove that
\[
|E| = \frac{\omega_n}{(\det A)^{1/2}}
\]
where \(\omega_n \) is the volume of the unit ball.

23. Let \(f_n(x) = \frac{1}{\ln(n+1)} \frac{nx}{1 + n^2 x^4} \) for \(0 \leq x \leq 1 \). Prove that \(f_n \) converges pointwise in \([0, 1]\) and not uniformly. Prove that \(f_n \to 0 \) in measure and \(\int_0^1 f_n(x) \, dx \to 0 \) as \(n \to \infty \).

24. Let \(0 < x_n \leq a \) and \(x_n \to a \) as \(n \to \infty \). Prove that the series \(\sum_{n=1}^{\infty} (a - x_n) \) converges if and only if \(\frac{x_1 + \cdots + x_N}{a^N} \to \ell \) for some \(\ell > 0 \) as \(N \to \infty \). HINT: \(\ln x \sim (x - 1) \) as \(x \to 1^- \).

25. Let \(f : [a, b] \to \mathbb{R} \) integrable. Prove that the functions \(f_n(x) = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f(t) \, dt \) are well defined for \(a \leq x \leq b, n = 1, 2, \cdots \) and satisfy \(\int_a^b f_n(t) \, dt = f_{n+1}(x) \).

26. Investigate the convergence of the integral
\[
\int_0^{\infty} \frac{|\sin x|}{e^{x^2}} \, dx.
\]
HINT: write the integral as \(\sum_{n=0}^{\infty} \int_\pi^{(n+1)\pi} \cdots \); next make the change of variables \(x = y + n\pi \) and break the domain of integration into \(|\sin y| \geq \pi/\sqrt{n} \) and \(|\sin y| \leq \pi/\sqrt{n} \). Show that the first piece adds ok, and for the second piece use that \(\sin y \sim y \), dominate the integrand and change variables to show that it is \(O(1/n^2) \).

27. Let \(\Omega \) be an uncountable set and let \(\mathcal{F} = \{ A \subset \Omega : A \text{ is countable or } A^c \text{ is countable} \} \). Prove that \(\mathcal{F} \) is a \(\sigma \)-algebra. Define the measures \(\mu(A) = +\infty \) if \(A \) is an infinite set, \(\mu(A) = \#(A) \) if \(A \) is finite; \(\nu(A) = 0 \) if \(A \) is countable and \(\nu(A) = 1 \) if \(A \) is uncountable. Prove that \(\nu \) is absolutely continuous with respect to \(\mu \) but an integral representation of the form \(\nu(A) = \int_A f \, d\mu \) is not valid. Why this does not contradicts Radon-Nikodym’s theorem?

28. Let \((X, \Sigma, \mu) \) be a finite measure space, \(\{E_j\}_{j=1}^N \subset \Sigma \) and \(\{c_j\}_{j=1}^N \subset \mathbb{R} \). For \(E \in \Sigma \) define
\[
\nu(E) = \sum_{j=1}^N c_j \mu(E \cap E_j).
\]
Prove that \(\nu \) is absolutely continuous with respect to \(\mu \) and find the Radon-Nikodym derivative \(\frac{d\nu}{d\mu} \).
29. Let μ_k be a sequence of measures on a σ-algebra Σ of a set X such that $\nu_k(X) \leq C$ for all k. Define $\mu = \sum_{k=1}^{\infty} \frac{\mu_k}{2^k}$. Prove that μ is a measure in Σ and μ_k is absolutely continuous with respect to μ for each k.

30. Let μ be a finite Borel measure on $[a, b]$ that is absolutely continuous with respect to Lebesgue measure. Prove that $g(x) = \mu([a, x])$ is an absolutely continuous function in $[a, b]$.

31. Let μ be a finite Borel measure on the interval $[a, b]$. Prove that the function $g(x) = \mu([a, x])$ is non decreasing and continuous function from the right on $[a, b]$.

32. If A, B are μ-measurable and $\mu(A \cup B) = \mu(A) + \mu(B)$, then $\mu(A \cap B) = 0$. HINT: use the Carathéodory condition.