SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD

CRISTIAN E. GUTIÉRREZ
FEBRUARY 13, 2009

1. Dirichlet integral

Let \(f \in C(\partial \Omega) \) with \(\Omega \) open and bounded. Let \(H = \{ u \in C^1(\bar{\Omega}) : u = f \text{ on } \partial \Omega \} \) and

\[
D(u) = \int_{\Omega} |Du(x)|^2 \, dx.
\]

The objective is to prove that with minimizers of \(D(u) \) over \(H \) one can solve the Dirichlet problem in \(\Omega \).

We assume that \(f \) satisfies the following property: there exists \(v \in C^1(\bar{\Omega}) \) such that \(v = f \) on \(\partial \Omega \). This is not a restriction to solve the Dirichlet problem with this approach because if \(f \in C(\partial \Omega) \) then by the Weierstrass approximation theorem there exist polynomials \(f_k \) in \(\mathbb{R}^n \) such that \(f_k|_{\partial \Omega} \) converge uniformly to \(f \) on \(\partial \Omega \). If we can solve the Dirichlet problem with data \(u_k = f_k \) on \(\partial \Omega \), then by the maximum principle \(u_k \rightarrow u \) uniformly in \(\Omega \) for some \(u \) and therefore \(u \) is harmonic in \(\Omega \) and has boundary values \(f \).

If \(u \in C^2(\Omega) \cap C^1(\bar{\Omega}) \) satisfies \(\Delta u = 0 \) in \(\Omega \) and \(u = f \) on \(\partial \Omega \), then

\[
D(u) \leq D(v), \quad \forall v \in H.
\]

That is, the Dirichlet integral is minimized by the solution of the Dirichlet problem. This follows writing \(g = v - u \) with \(v \in H \)

\[
D(v) = D(g + u) = D(g) + 2D(g, u) + D(u)
\]

\[
= D(g) + D(u) + 2 \int_{\partial \Omega} g D_v u \, d\sigma - 2 \int_{\Omega} g \Delta u \, dx
\]

\[
= D(g) + D(u) \geq D(u)
\]

from the first Green formula. There are continuous functions \(f \in C(\partial \Omega) \) such that the solution \(u \) of the Dirichlet problem with data \(f \) satisfies \(D(u) = +\infty \). An
example is the function \(u(r, \theta) = \sum_{k=1}^{\infty} \frac{r^n \cos(n! \theta)}{n^2} \) that is harmonic in the unit disk, it has boundary values \(f(\theta) = \sum_{k=1}^{\infty} \frac{\cos(n! \theta)}{n^2} \), and \(D(u) = +\infty \).

We have that \(D(\lambda u + v) = \lambda^2 D(u) + 2\lambda D(u, v) + D(v) \geq 0 \) for all \(\lambda \), and so \(D(u)D(v) - D(u, v) \geq 0 \). Therefore \(\|u\|_D = D(u)^{1/2} \) defines a quasi norm in \(H \), that is, \(\| \cdot \|_D \) satisfies the triangle inequality and \(\| \lambda u \|_D = |\lambda| \|u\|_D \).

2. Poincaré inequality

Let \(H = \{ u \in C^1(\bar{\Omega}) : u = f \text{ on } \partial \Omega \} \) and \(H_0 = \{ u \in C^1(\bar{\Omega}) : u = 0 \text{ on } \partial \Omega \} \).

Lemma 1. There exists a constant \(C > 0 \), depending only on the domain \(\Omega \), such that

\[
\int_{\Omega} w(x)^2 \, dx \leq C \int_{\Omega} |Dw(x)|^2 \, dx,
\]

for all \(w \in H_0 \).

Proof. Since \(\Omega \) is bounded, \(\Omega \subset Q = [-a, a] \times [-a, a] \). Let \(\bar{w}(x, y) = w(x, y) \) for \((x, y) \in \Omega \) and \(\bar{w}(x, y) = 0 \) for \((x, y) \in Q \setminus \Omega \). We assume that the intersection of \(\Omega \) with each vertical line is finite union of open intervals. Then the function \(\bar{w}(x, \cdot) \) is Lipschitz and therefore absolutely continuous. So we can write

\[
\bar{w}(x, y) = \int_{-a}^{y} \bar{w}_y(x, \xi) \, d\xi.
\]

Then squaring and using Cauchy-Schwartz we get

\[
\bar{w}(x, y)^2 \leq (y + a) \int_{-a}^{y} \bar{w}_y(x, \xi)^2 \, d\xi \leq 2a \int_{-a}^{a} \bar{w}_y(x, \xi)^2 \, d\xi,
\]

and integrating this inequality in \(x \) yields

\[
\int_{-a}^{a} \bar{w}(x, y)^2 \, dx \leq 2a \int_{-a}^{a} \int_{-a}^{a} \bar{w}_y(x, \xi)^2 \, d\xi \, dx.
\]

Now integrating in \(y \) yields

\[
\int_{-a}^{a} \int_{-a}^{a} \bar{w}(x, y)^2 \, dx \, dy \leq 4a^2 \int_{-a}^{a} \int_{-a}^{a} \bar{w}_y(x, \xi)^2 \, d\xi \, dx.
\]

From the definition of \(\bar{w} \) and since \(\bar{w}_y(x, y) = 0 \) when \((x, y) \in Q \setminus \Omega \), the lemma then follows with \(C = 4a^2 \). \(\square \)
Remark 2. It is clear that if $\Omega \subset [a,b] \times [c,d]$, then the estimate holds with $C = (b-a)(d-c)$. In higher dimensions, one obtains in the same way that if $\Omega \subset \mathbb{R}$ with \mathbb{R} an n-dimensional interval, then the lemma holds with $C = |\mathbb{R}|$.

3. Solution to the Dirichlet problem

By our assumption the set H, \emptyset, and therefore $\inf_H D(u) = L < \infty$. So there exists a sequence (possibly not unique) $v_k \in H$ such that $D(v_k) \to L$ as $k \to \infty$. We call v_k a minimizing sequence, and the objective is to construct with v_k a harmonic function ϕ in Ω such that $\phi = f$ on $\partial \Omega$.

Lemma 3. For each $w \in H_0$, we have
\[
\lim_{k \to \infty} D(v_k, w) = 0,
\]
where v_k is the minimizing sequence. Moreover, if $D(w_k) \leq M$ with $w_k \in H_0$, then $D(v_k, w_k) \to 0$ as $k \to \infty$.

Proof. We have $v_k + \epsilon w \in H$ for all ϵ and so
\[
L \leq D(v_k + \epsilon w) = D(v_k) + 2\epsilon D(v_k, w) + \epsilon^2 D(w),
\]
and the minimum of the right hand side is attained when $\epsilon = -\frac{D(v_k, w)}{D(w)}$ which yields
\[
L \leq D(v_k) - \frac{D^2(v_k, w)}{D(w)}.
\]
Therefore
\[
|D(v_k, w)| \leq (D(v_k) - L)^{1/2} D(w)^{1/2},
\]
and the lemma follows. \hfill \Box

Lemma 4. The minimizing sequence v_k is a Cauchy sequence in the norm $\|\cdot\|_{L^2(\Omega)} + \|\cdot\|_D$.

Proof. Let $w = v_k - v_m$. We have $D(v_k) = D(v_m + w) = D(v_m) + 2D(v_m, w) + D(w)$. So
\[
|D(w)| \leq |D(v_k) - D(v_m)| + 2|D(v_m, w)|
\]
and therefore from the previous lemma, $|w|_{L^2(\Omega)} \to 0$ as $k, m \to \infty$. From the Poincaré inequality, $|w|_{L^2(\Omega)} \leq C|w|_D$ and the lemma follows. \hfill \Box

Given $x \in \Omega$ and $B_{\rho}(x) \subset \Omega$ we let
\[
\phi_k(x, \rho) = \int_{B_{\rho}(x)} v_k(z) \, dz.
\]
Lemma 5. Let K be closed $K \subset \Omega$, and fix $\rho < \text{dist}(K, \Omega^c)$. Then $\phi_k(x, \rho)$ are continuous and converge uniformly for $x \in K$ to a function $\phi(x, \rho)$ for each ρ.

Proof. The functions $\phi_k(x, \rho)$ are clearly continuous. We write

$$|\phi_k(x, \rho) - \phi_m(x, \rho)| = \left| \int_{B_{\rho}(x)} (v_k(z) - v_m(z)) \, dz \right| \leq \left(\int_{B_{\rho}(x)} |v_k(z) - v_m(z)|^2 \, dz \right)^{1/2} \leq \frac{1}{|B_{\rho}(x)|^{1/2}} \|v_k - v_m\|_{L^2(\Omega)},$$

so the sequence $\phi_k(x, \rho)$ is uniformly Cauchy and the lemma follows. \hfill \Box

Lemma 6. The function $\phi(x, \rho)$ is independent of ρ, i.e., $\phi(x, \rho) = \phi(x)$.

Proof. Fix $x \in \Omega$ and let $\rho_1 < \rho_2$ with $B_{\rho_1}(x) \subset \Omega$. Suppose we are in dimension two and let

$$w(x) = \begin{cases} \frac{1}{2\pi} \left(\log \frac{\rho_1}{\rho_2} + \frac{1}{2} |x - z|^2 \left(\frac{1}{\rho_1^2} - \frac{1}{\rho_2^2} \right) \right), & |x - z| \leq \rho_1 \\ \frac{1}{2\pi} \left(\log \frac{|x - z|}{\rho_2} + \frac{1}{2} \left(1 - \frac{|x - z|^2}{\rho_2^2} \right) \right), & \rho_1 < |x - z| \leq \rho_2 \\ 0 & \rho_2 < |x - z|, \end{cases}$$

We have

$$Dw(x) = \begin{cases} \frac{1}{2\pi} (x - z) \left(\frac{1}{\rho_2^2} - \frac{1}{\rho_1^2} \right), & |x - z| \leq \rho_1 \\ \frac{1}{2\pi} (x - z) \left(\frac{1}{\rho_2^2} - \frac{1}{|x - z|^2} \right), & \rho_1 < |x - z| \leq \rho_2 \\ 0 & \rho_2 < |x - z|, \end{cases}$$

We have that $w \in H_0$ and

$$\Delta w(x) = \begin{cases} \frac{1}{\pi \rho_1^2} - \frac{1}{\pi \rho_2^2}, & |x - z| < \rho_1 \\ -\frac{1}{\pi \rho_2^2}, & \rho_1 < |x - z| < \rho_2 \\ 0 & \rho_2 < |x - z|. \end{cases}$$

To apply the first Green formula we remove the places where the Laplacian of w is discontinuous. We set

$$\Omega_\epsilon = \Omega \setminus \{ z : \rho_1 - \epsilon < |x - z| < \rho_1 + \epsilon \} \cup \{ z : \rho_2 - \epsilon < |x - z| < \rho_2 + \epsilon \}.$$
By the first Green formula applied in Ω_ϵ we have
\[\int_{\Omega_\epsilon} Dv_k \cdot Dw \, dx + \int_{\Omega_\epsilon} v_k \Delta w \, dx = \int_{\partial \Omega_\epsilon} v_k(z) \partial_\eta w(x) \, d\sigma(z). \]

From the form of the gradient of w, the right hand side of the last identity tends to zero as $\epsilon \to 0$, and so we obtain
\[0 = D(v_k, w) + \int_{\Omega} v_k \Delta w \, dx = D(v_k, w) + \int_{B_{\rho_1}(x)} v_k(z) \, dz - \int_{B_{\rho_2}(x)} v_k(z) \, dz, \]
and letting $k \to \infty$ the lemma follows. \hfill \Box

Theorem 7. The function ϕ is harmonic in Ω and $\phi = f$ on $\partial \Omega$.

Proof. We claim that if $B_a(x_0), B_b(x_0) \subset \Omega$, then
\[\int_{B_a(x_0)} \phi_k(x, a) \, dx = \int_{B_b(x_0)} \phi_k(x, b) \, dx. \]

In fact, we have
\[\phi_k(x, a) = \int_{B_a(x)} v_k(z) \, dz = \int_{B_a(0)} v_k(z + x) \, dz, \]
and integrating in x
\[\int_{B_a(x_0)} \phi_k(x, a) \, dx = \int_{B_a(x_0)} \int_{B_a(0)} v_k(u) \, du \, dz = \int_{B_a(0)} \int_{B_a(x_0)} v_k(u + z) \, du \, dz \]
\[= \int_{B_a(0)} \int_{B_b(x_0 + z)} v_k(u) \, du \, dz = \int_{B_a(0)} \phi_k(x_0 + z, b) \, dz \]
\[= \int_{B_b(x_0)} \phi_k(z, b) \, dz, \]
which proves the claim. Letting $k \to \infty$ we obtain
\[\int_{B_a(x_0)} \phi(x) \, dx = \int_{B_b(x_0)} \phi(x) \, dx, \]
and since ϕ is continuous, letting $b \to 0$ yields
\[\int_{B_a(x_0)} \phi(x) \, dx = \phi(x_0), \]
that is, ϕ satisfies the mean value property in Ω and the first part of the theorem is then proved.

We shall prove in dimension two that
\[\lim_{x \to x_0, x \in \Omega} \phi(x) = f(x_0), \quad x_0 \in \partial \Omega, \]
under the following assumption on \(\Omega \): there exists \(R > 0 \) such that \(\{ z : |z - x| = \rho \} \cap \partial \Omega \neq \emptyset \) for all \(x \in \partial \Omega \) and for all \(\rho \leq R \). Let \(x_0 \in \partial \Omega \) and consider the ball \(B_\rho(x_0) \), and let \(x \in B_{\rho/2}(x_0) \cap \Omega \). Let \(\sigma = \text{dist}(x, \partial \Omega) \). There exists \(x_1 \in \partial \Omega \) such that \(|x_1 - x| = \sigma \). We have \(\sigma \leq h/2, |x_0 - x_1| < h \), and \(B_{\sigma/2}(x) \subset B_{3\sigma/2}(x_1) \cap \Omega \). We write

\[
|f(x_0) - \phi(x)| \leq |f(x_0) - f(x_1)| + |f(x_1) - \phi(x)| + \left| v_k(x) - \int_{B_{\sigma/2}(x)} v_k(z) \, dz \right| + \left| \int_{B_{\sigma/2}(x)} v_k(z) \, dz - \phi(x) \right|
\]

\[
= I + II + III + IV.
\]

Since \(f \) is continuous, \(I \) is small for \(h \) small. \(II \) is small since \(v_k \in C(\bar{\Omega}) \) and \(v_k = f \) on \(\partial \Omega \). \(III \) is also small for \(h \) small since \(\sigma \leq h/2 \).

We estimate \(IV \). Consider the circle \(C_\rho(x_1) \) for \(\rho \leq 3\sigma/2 \). If \(3\sigma/2 < R \), where \(R \) appears in the condition on \(\Omega \), then \(C_\rho(x_1) \) intersects \(\partial \Omega \) at some point \(x_\rho \). Let \(w = v_k - v_m \). We have \(w \in H_0(\Omega) \) and we extend \(w \) to be zero outside \(\bar{\Omega} \) and we still call this extension \(w \). Let \(h(\theta) = w(x_1 + \rho(\cos \theta, \sin \theta)) \), \(x' \in C_\rho(x_1) \), and \(x_1 + \rho(\cos \theta_0, \sin \theta_0) = x_\rho, x_1 + \rho(\cos \theta_1, \sin \theta_1) = x' \). We have

\[
w(x') = \int_{\theta_0}^{\theta_1} h'(\theta) \, d\theta = \int_{\theta_0}^{\theta_1} Dw(x_1 + \rho(\cos \theta, \sin \theta)) \cdot (-\sin \theta, \cos \theta) \rho \, d\theta.
\]

Then

\[
|w(x')| \leq \int_{\theta_0}^{\theta_1} |Dw(x_1 + \rho(\cos \theta, \sin \theta))| \rho \, d\theta
\]

\[
\leq \rho|\theta_1 - \theta_0|^{1/2} \left(\int_{\theta_0}^{\theta_1} |Dw(x_1 + \rho(\cos \theta, \sin \theta))|^2 \, d\theta \right)^{1/2}
\]

\[
\leq \rho(2\pi)^{1/2} \left(\int_0^{2\pi} |Dw(x_1 + \rho(\cos \theta, \sin \theta))|^2 \, d\theta \right)^{1/2},
\]

that is,

\[
|w(x_1 + \rho(\cos \theta_1, \sin \theta_1))|^2 \leq 2\pi \rho^2 \int_0^{2\pi} |Dw(x_1 + \rho(\cos \theta, \sin \theta))|^2 \, d\theta.
\]

Integrating this inequality for \(0 \leq \theta_1 \leq 2\pi \) yields

\[
\int_0^{2\pi} |w(x_1 + \rho(\cos \theta_1, \sin \theta_1))|^2 \, d\theta_1 \leq 4\pi^2 \rho^2 \int_0^{2\pi} |Dw(x_1 + \rho(\cos \theta, \sin \theta))|^2 \, d\theta,
\]

and now integrating for \(0 \leq \rho \leq 3\sigma/2 \) we obtain

\[
\int_{B_{3\sigma/2}(x_1)} w(z)^2 \, dz \leq 9\pi^2 \sigma^2 \int_{B_{3\sigma/2}(x_1)} |Dw(z)|^2 \, dz.
\]
Therefore
\[
\left| \int_{B_{\sigma/2}(x)} (v_k(z) - v_m(z)) \, dz \right| \leq \left(\int_{B_{\sigma/2}(x)} |v_k(z) - v_m(z)|^2 \, dz \right)^{1/2} \\
\leq 3 \left(\int_{B_{3\sigma/2}(x_1)} |w(z)|^2 \, dz \right)^{1/2} \\
\leq 2 \sqrt{\pi} \left(\int_{B_{3\sigma/2}(x_1)} |Dw(z)|^2 \, dz \right)^{1/2} \\
\leq 2 \sqrt{\pi} \left(\int_{\Omega} |D(v_k - v_m)(z)|^2 \, dz \right)^{1/2}
\]
which tends to zero as \(k, m \to \infty \). Letting \(m \to \infty \) we obtain
\[
\left| \int_{B_{\sigma/2}(x)} v_k(z) \, dz - \phi(x) \right| < \epsilon
\]
for all \(k \) sufficiently large and so \(IV \) is also small.

\[\square\]