The resolvent trace of an elliptic cone operator

GERARDO A. MENDOZA

(joint work with Juan B. Gil and Thomas Krainer)

This note discusses some aspects of the analysis leading to the proof of the main theorem in [10] (stated here as Theorem 1) on the structure of the asymptotics of the resolvent trace of a general elliptic cone operator as the spectral parameter tends to infinity, under suitable minimal growth assumptions on the principal symbols of the operator.

We deal with an elliptic cone differential operator

\[A : C^\infty_c(M; E) \subset x^\gamma L^2_b(M; E) \to x^\gamma L^2_b(M; E) \]

of positive order \(m \), an element of \(x^{-m} \text{Diff}^m_b(M; E) \); \(M \) is a compact \(n \)-manifold with boundary, \(E \to M \) is a smooth complex Hermitian vector bundle, and \(L^2_b \) is defined using some fixed smooth positive \(b \)-density \(m \). As usual, \(x \) is a smooth defining function for \(\mathcal{Y} = \partial M \), positive in the interior of \(M \). The number \(\gamma \in \mathbb{R} \) is arbitrary. Ellipticity means that \(P = x^m A \) is a \(b \)-elliptic differential operator. Somewhat unnaturally (see [6]), we write here \(\varphi(A) = \varphi(P) \) (see [16] for the notation \(\varphi(P) \) and the notion of \(b \)-ellipticity).

Details of the following setup can be found in [6]. Let \(D_{\min} \), resp. \(D_{\max} \), be the domains of the minimal, resp. maximal, extensions of the operator (1):

\[D_{\max} = \{ u \in x^\gamma L^2_b(M; E) : Au \in x^\gamma L^2_b(M; E) \} \]

is a Hilbert space with respect to the inner product \((u, v)_A = (Au, Av) + (u, v) \), \(u, v \in D_{\max} \), and \(D_{\min} \) is the closure of \(C^\infty_c(M; E) \) in \(D_{\max} \). From [13] we know that \(D_{\min} \) has finite codimension in \(D_{\max} \), hence every closed extension of (1) has as domain a subspace \(D \subset D_{\max} \) of the form \(D = D + D_{\min} \) where \(D \) is uniquely determined by the condition that \(D \) is orthogonal to \(D_{\min} \). We let \(\mathcal{E} \) be the orthogonal complement of \(D_{\min} \) in \(D_{\max} \). Domains of closed extensions then correspond to the points of the various complex Grassmannian varieties associated with \(\mathcal{E} \).

There is an operator

\[A_\lambda : C^\infty_c(\mathcal{Y}^\wedge; \psi^* E) \subset x^\lambda L^2_b(\mathcal{Y}^\wedge; \psi^* E) \to x^\lambda L^2_b(\mathcal{Y}^\wedge; \psi^* E) \]

canonically associated with \(A \). Here \(\psi : \mathcal{Y}^\wedge \to \mathcal{Y} \) is the inward pointing normal bundle of \(\mathcal{Y} \) in \(M \) (the zero section is included), \(x_\lambda = dx|_{\mathcal{Y}^\wedge} \) and the \(L^2 \) space is defined using the density \(x_\lambda^{-1} dx \otimes m_{\mathcal{Y}} \) where \(m = x^{-1} dx \otimes m_{\mathcal{Y}} \) along \(\mathcal{Y} \). The operator (2) has its own maximal and minimal domains \(D_{\lambda,\max} \) and \(D_{\lambda,\min} \). Lesch’s result on the codimension of the latter in the former still holds. We let \(\mathcal{E}_\lambda \) be the orthogonal complement of \(D_{\lambda,\min} \) in \(D_{\lambda,\max} \). There is a natural vector space isomorphism

\[\theta : \mathcal{E} \to \mathcal{E}_\lambda \]

which allows passage from domains of closed extensions of (1) to those of (2) and back, namely

\[D = D + D_{\min} \leftrightarrow D_\lambda = \theta(D) + D_{\lambda,\min} \].
Let Λ be a closed sector in \mathbb{C}. The main result of [7] asserts that if $\sigma(A) - \lambda$ is invertible when $\lambda \in \Lambda$ and if in addition Λ is a sector of minimal growth for $A_{\Lambda,D_{\Lambda}}$ (A_{Λ} with domain D_{Λ}), then Λ is a sector of minimal growth for $A_{D_{\Lambda}}$, where D and D_{Λ} are related by (3). In [10] we show:

Theorem 1. Let Λ be a sector of minimal growth both for $\sigma(A)$ and for $A_{\Lambda,D_{\Lambda}}$. For any $\varphi \in C^\infty(M;\text{End}(E))$ and $\ell \in \mathbb{N}$ with $ml > n$,

$$\text{Tr}(\varphi(A_{D} - \lambda)^{-\ell}) \sim \sum_{j=0}^{n-1} \alpha_j \lambda^{j+\frac{m}{m+l}} + \alpha_n \log(\lambda)\lambda^{-\ell} + s_D(\lambda)$$

with coefficients $\alpha_j \in \mathbb{C}$ that are independent of the choice of D, and

$$s_D(\lambda) \sim \sum_{j=0}^{\infty} r_j(\lambda^{\mu_1}, \ldots, \lambda^{\mu_N}, \log \lambda)^{\gamma_j/m}$$

where each r_j is a rational function in $N+1$ variables, $N \in \mathbb{N}_0$, with real numbers $\mu_k, k = 1, \ldots, N$, and $0 \geq \nu_j \searrow -\infty$ as $j \to \infty$. We have $r_j = p_j/q_j$ with $p_j, q_j \in \mathbb{C}[z_1, \ldots, z_{N+1}]$ such that $q_j(\lambda^{\mu_1}, \ldots, \lambda^{\mu_N}, \log \lambda)$ is uniformly bounded away from zero for large λ.

A number of references at the end of this note, needless to say incomplete, point to earlier related work by various other authors in special cases.

Let $\text{bg-res}(A_{\lambda})$ be the set of $\lambda \in \mathbb{C}$ such that $A_{\Lambda} - \lambda$ is injective on $D_{\Lambda,min}$ and surjective on $D_{\Lambda,max}$. For $\lambda \in \text{bg-res}(A_{\lambda})$ set $K_{\lambda} = \ker(A_{\Lambda,D_{\Lambda,max}} - \lambda)$. Then $\lambda \in \text{res}(A_{\Lambda,D_{\Lambda}})$ iff $\lambda \in \text{bg-res}(A_{\lambda})$ and $K_{\lambda} \oplus D_{\Lambda} = D_{\Lambda,max}$. Let R_{λ} be the range of $A_{\Lambda} - \lambda$ on $D_{\Lambda,min}$. There exist

$$B_{\Lambda,min}(\lambda) : x_\lambda^2 L_0^2 \to D_{\min} \text{ with kernel equal to } R_{\lambda}$$

such that $B_{\Lambda,min}(\lambda)(A_{\Lambda} - \lambda) = I$ on $D_{\Lambda,min}$, and

$$B_{\Lambda,max}(\lambda) : x_\lambda^2 L_0^2 \to D_{\max} \text{ with range equal to } K_{\lambda} \cap D_{\Lambda,max}$$

(the orthogonal in the space $x_\lambda^2 L_0^2$) such that $(A_{\Lambda} - \lambda)B_{\Lambda,max}(\lambda) = I$ on $x_\lambda^2 L_0^2$.

The resolvent of $A_{\Lambda,D_{\Lambda}}$ is (see [6])

$$B_{\Lambda,D_{\Lambda}}(\lambda) = B_{\Lambda,max}(\lambda) - [I - B_{\Lambda,min}(\lambda)(A_{\Lambda} - \lambda)]\pi_{\Lambda,max}\pi_{K_{\lambda},D_{\Lambda}}\pi_{\Lambda,max}B_{\Lambda,max}(\lambda)$$

in which $\pi_{K_{\lambda},D_{\Lambda}} : D_{\Lambda,max} \to D_{\Lambda,max}$ is the projection on K_{λ} according to the decomposition $D_{\Lambda,max} = K_{\lambda} \oplus D_{\Lambda}$ (this holds when $\lambda \in \text{res}(A_{\lambda})$) and $\pi_{\Lambda,max}$ is the orthogonal projection on E_{Λ}. Altogether, $\pi_{\Lambda,max}\pi_{K_{\lambda},D_{\Lambda}}|_{E_{\Lambda}}$ is equal to the projection $\pi_{K_{\lambda},D_{\Lambda}} : E_{\Lambda} \to E_{\Lambda}$ on $K_{\lambda} = \pi_{\Lambda,max}K_{\lambda}$ according to $E_{\Lambda} = K_{\lambda} \oplus D_{\Lambda}$.

The multiplicative group \mathbb{R}_+ acts canonically on \mathbb{Y}^Λ. Define κ_{ϱ} on $C^\infty(\mathbb{Y}^\Lambda; E)$ for $\varrho \in \mathbb{R}_+$ by $\kappa_{\varrho}(u)(\nu) = \varrho^{-\gamma}u(\varrho \nu)$. The operators κ_{ϱ} extend to give a strongly continuous unitary action of \mathbb{R}_+ on $x_\lambda^2 L_0^2(\mathbb{Y}^\Lambda; \varrho E)$. The operator A_{Λ} has the property $\kappa_{\varrho}^{-1}(A_{\Lambda} - \varrho^m\lambda)\kappa_{\varrho} = \varrho^m(A_{\Lambda} - \lambda)$, which in turn produces $\kappa_{\varrho}K_{\lambda} = K_{\varrho^m\lambda}$ as well as $\kappa_{\varrho}^{-1}B_{\Lambda,min}(\varrho^m\lambda)\kappa_{\varrho} = \varrho^{-m}B_{\Lambda,min}(\lambda)$ and the same formula with min replaced by max.

As a consequence, $B_{\Lambda,D_{\Lambda}}(\varrho^m\lambda)$ is equal to

$$\varrho^{-m}\kappa_{\varrho}\{B_{\Lambda,max}(\lambda) - [I - B_{\Lambda,min}(\lambda)(A_{\Lambda} - \lambda)]\pi_{K_{\lambda},k_{\varrho}^{-1}D_{\Lambda}}\pi_{\Lambda,max}B_{\Lambda,max}(\lambda)\}k_{\varrho}^{-1}.$$

This formula brings to the forefront the role played by the dynamical system $\varrho \mapsto \kappa_{\varrho}^{-1}D_{\Lambda}$ in the Grassmannian $\text{Gr}_k(E_{\Lambda})$, $k = \dim D_{\Lambda}$, especially the limiting
sets, on the behavior of the resolvent. One can show that the ray through \(\lambda \neq 0 \) is a ray of minimal growth for \(A_\Lambda D_\Lambda \) if and only if the set

\[
\Omega^-(D_\Lambda) = \{ D \in \text{Gr}_k(E_\Lambda) : \exists \{ g_k \}_{k=1}^{\infty}, g_k \to \infty, \lim k^{-1} D_\Lambda = D \}
\]

is disjoint from \(V_{K_\lambda} = \{ D \in \text{Gr}_k(E_\Lambda) : D \cap K_\lambda = 0 \} \), see [8]. The hypotheses of Theorem 1 imply this is the case for \(\lambda \) in a closed arc in \(\Lambda \). In [10] we elucidate the asymptotics of \(\pi_{K_\lambda,\kappa_\lambda^{-1}D_\Lambda} \) and use it to determine the asymptotics of the trace of the resolvent of \(A_\Lambda \).

References

