Crossbar Theorem

Theorem 1 Let \(X \) be a point interior to \(\angle BAC \). Then the ray \(\overrightarrow{AX} \) crosses the segment \(BC \).

![Diagram of Triangle ABC with a point X interior to \(\angle BAC \) and ray \(\overrightarrow{AX} \) crossing segment \(BC \).]

Proof Let a point \(D \) be chosen so that \(B - A - D \). Then we can apply the Pasch axiom to \(\triangle CDB \) and conclude that \(\overrightarrow{AX} \) crosses either \(BC \) or \(DC \).

Noting that \(D \) and \(B \) are on opposite sides of \(\overrightarrow{AC} \), it follows that \(D \) and \(X \) are on opposite sides of \(\overrightarrow{AC} \), and hence that all points of \(\overrightarrow{DC} \) are on the side of \(\overrightarrow{AC} \) opposite to all points on \(\overrightarrow{AX} \). Therefore \(\overrightarrow{AX} \) does not cross \(DC \). We must finally eliminate the possibility that the opposite ray, \(\overrightarrow{AY} \), crosses either \(DC \) or \(BC \). To do so we have only to notice that both of these segments are on the opposite side of \(\overrightarrow{DB} \) from \(\overrightarrow{AY} \).

The only possibility not eliminated is that \(\overrightarrow{AX} \) crosses \(BC \). \(\blacksquare \)