Click on picture for details.
The Algebra and Number Theory group is active in a variety of
research areas including:

Algebra Seminar: Besides serving as a forum for our faculty, students and invited speakers to report on their latest research activities, the weekly departmental Algebra Seminar regularly offers more leisurely paced series of three or more lectures on various algebraic topics. Our graduate students are the primary targeted audience of these minicourses, but the format has met with great success among our faculty as well. Here is a list of some recent minicourses:
Number Theory Seminar: This seminar was organized for many years by the late Marvin Knopp. It is now hosted by nearby Bryn Mawr College and continues to provide a venue for lively interactions between number theorists from the greater Philadelphia area.
Several graduate students have completed Ph.D.s in algebra and number theory in recent years. Interested graduate students are encouraged to take advanced topics courses in these and related areas and to attend the above listed weekly seminars. Summer research stipends (from NSA and NSF) are currently available for eligible graduate students.
General information about graduate study in mathematics at Temple, including a list of our graduate courses, can be found on the graduate program website. Below is a listing, with brief descriptions, of the central courses specifically in Algebra and Number Theory. These courses provide the basic toolkit for aspiring algebraists or number theorists. More advanced courses are also offered frequently; these cover various topics including deformation theory, computational methods in algebra, algebraic geometry, invariant theory, Lie groups etc.
8011/8012. Abstract Algebra I / II, a twosemester sequence that is offered every year, is the foundational course in abstract algebra; it gives an introduction to the terminology and methods of modern abstract algebra. The course sequence should preferably be taken during the first year of graduate studies, since all other courses on algebraic topics build on it. The main topics covered are: groups, rings, fields, Galois theory, modules, and (multi)linear algebra.  
9012/13. Representation Theory I / II. This is an ideal followup course to the 8011/12 sequence. Representations of groups, Lie algebras, and other algebraic structures feature in many areas of mathematics besides algebra, yet the basic methods and results are quite accessible. This twosemester course is offered regularly. The first semester generally focuses on representations of finite groups, while the second semester is mainly devoted to finitedimensional Lie algebras.  
9011. Homological Algebra can also be taken directly after the basic 8011/12 course. The topic is more abstract than representation theory and requires slightly greater mathematical maturity. Homological algebra finds widespread use in pure mathematics, including many areas of analysis. The material covered in this onesemester course includes chain complexes, the rudiments of category theory, derived functors, and spectral sequences.  
9014/15. Commutative Algebra and Algebraic Geometry I / II. This is a yearlong course on the fundamental concepts of commutative algebra and classical as well as modern algebraic geometry. The 8011/12 course sequence suffices for background, but some knowledge of rudimentary pointset topology will be helpful. Topics for the first semester include: ideals of commutative rings, modules, Noetherian and Artinian rings, Noether normalization, Hilbert's Nullstellensatz, rings of fractions, primary decomposition, discrete valuation rings and the rudiments of dimension theory. Topics for the second semester include: affine and projective varieties, morphisms of algebraic varieties, birational equivalence, and basic intersection theory. In the second semester, students will also learn about schemes, morphisms of schemes, coherent sheaves, and divisors. 