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ABSTRACT

REFLECTION GROUPS AND SEMIGROUP ALGEBRAS IN

MULTIPLICATIVE INVARIANT THEORY

Mohammed S. Tesemma

DOCTOR OF PHILOSOPHY

Temple University, August, 2004

Professor Martin Lorenz, Chair

In classical invariant theory one considers the situation where a group G of

n × n matrices over a field K acts on the polynomial algebra K[x1, . . . , xn]

by linear substitutions of the variables xi. The subalgebra of all polynomials

fixed (invariant) under the action of G is called the algebra of polynomial

G-invariants, usually denoted by K[x1, . . . , xn]G. One of the most celebrated

results on polynomial invariants is the Shephard-Todd-Chevalley Theorem:

Assume that G is finite of order not divisible by the characteristic of
K. Then the invariant algebra K[x1, . . . , xn]G is again a polynomial
algebra if and only if G acts as a pseudo-reflection group on the
vector space V = ⊕n

i=1Kxi.

Here an element g ∈ G is called a pseudo-reflection on V if G acts trivially on

a hyperplane in V or, equivalently, if the n × n matrix g − 1V has rank one.

The group G is said to act as a pseudo-reflection group on V if G is generated

by elements that are pseudo-reflections on V .

A different kind of group action, on Laurent polynomial algebras instead

of polynomial algebras, is defined as follows. Let G be a finite group acting by

automorphism on a lattice A ∼= Zn, and hence on the group algebra K[A] over a

field K. Fixing an isomorphism A ∼= Zn, we may think of the G-action on A as

given by a homomorphism G → GLn(Z), the group of invertible n×n-matrices
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over Z, and the group algebra K[A] can be identified with the Laurent poly-

nomial algebra K[x±1
1 , . . . , x±1

n ]. The subalgebra K[A]G of G-invariant Laurent

polynomials in K[A] is called an algebra of multiplicative invariants. A result

of Lorenz ([Lo01]) states that if G acts as a pseudo-reflection group on the

Q-vectorspace A⊗Q then K[A]G is a semigroup algebra over K. This is a mul-

tiplicative analogue of the “if”-part of Shephard-Todd-Chevalley theorem for

polynomial invariants. However, the converse of Lorenz’s theorem is open. In

this thesis we will state and prove an extended version of this theorem which

does indeed have a converse. Moreover, we take a different approach than

[Lo01] inasmuch as our arguments are based on the geometry of simplicial

cones rather than root systems.
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NOTATION

K an arbitrary field.

A an arbitrary K-algebra.

S(V ) the symmetric algebra of a K-vector space V .

Z+, Q+, R+ the non-negative integers, rationals, and reals respectively.

A := xZ
n

a free abelian group of rank n in multiplicative notation

K[A] the group algebra of A over K

S := K[x±1
1 , . . . , x±1

n ] the Laurent polynomial algebra in n variables.

G ≤ GLn(Z) a group of automorphisms of Zn or Kn.

R = SG the invariant algebra.
∑

fin sum of a finite collection.

〈{. . .}〉mon the submonoid generated by a given set {. . .}.

〈{. . .}〉gp the group generated by the given set{. . .}.

ϑ orbit sum.

C∨ the dual of a cone C.

Supp(f) the support of f .

H a family of hyperplanes.

I the initial map.

F face of a cone.

M a multiplicative monoid.



1

CHAPTER 1

INTRODUCTION

1.1 Overview

In algebraic terms, invariant theory is concerned with the study of group

actions, their fixed points, and their orbits. The actions are usually on algebras

of various sorts, the fixed points are subalgebras and the closed orbits form an

algebraic variety. More generally, if a group acts by automorphisms on a ring

then the object of investigation is the subring consisting of all elements that are

invariant (fixed) under the group action. One would like to determine which

ring theoretic properties of the ring are inherited by the subring of invariants.

In this Introduction we will start with a discussion of invariant theory

from a historical point of view. In §1.3 we will describe linear actions on

polynomial algebras, the type of group action studied in classical invariant

theory. Following the general outline of [NS02] we will state various important

problems of invariant theory and discuss some known results. Some of these

problems will provide the motivation for the questions considered in detail

later in this thesis. In §1.4 we set the stage for a relatively new type of group

actions on Laurent polynomials called multiplicative actions. In §1.5 we will

state some known results in multiplicative invariant theory that are related
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to classical results on polynomial invariants. Finally we will state the main

problem to which this thesis is devoted and describe our contribution towards

its solution.

1.2 Classical Invariant Theory

Classical invariant theory is the study of the geometrical properties of al-

gebraic group actions on affine space An = Kn (K is some algebraically closed

field, traditionally the complex numbers). Such a group action yields an action

on the algebra of polynomial functions on An, that is, the ordinary polyno-

mial algebra K[x1, . . . , xn]. This fascinating field was brought to life at the

beginning of the 19th century just as the theory of solutions of polynomial

equations was given its present form by Galois. The fundamental problem of

invariant theory was to find or at least prove the existence of a finite system

of generators for the algebra of polynomial invariants. David Hilbert solved

the existence problem in a spectacular series of papers from 1888 - 1893 that

propelled him into the position of the most renowned mathematician of his

time. The fact that the central problem was solved in combination with a new

abstract approach which entirely displaced the computational in pure mathe-

matics caused invariant theory to sink into relative obscurity. But the indirect

influence of invariant theory continued to be felt in group theory and repre-

sentation theory, while in abstract algebra the three most famous of Hilbert’s

general theorems, the Basis Theorem, the Syzygy Theorem and the Nullstel-

lensatz, were all born as Lemmas (Hilfsätze) in his invariant theory papers.

Recent years have witnessed a dramatic resurgence of this subject with new

applications ranging from topology and geometry to physics, continuum me-

chanics, and computer vision.

As a result of its historical roots, the subject holds a particular fascination

for any mathematician with a desire to understand the culture, sociology, and

history of mathematics. (Part of the contents of the above section on classical

invariant theory is taken from [Ol99].)
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1.3 Linear Actions

1.3.1 The Setting

In the most traditional setting of invariant theory, the ring under con-

sideration is the polynomial algebra K[x1, . . . , xn] and the group G acts on

K[x1, . . . , xn] by sending the space of variables ⊕n
i=1Kxi to itself. In a mod-

ern base free description this can be rephrased as follows. Let V be an n-

dimensional vector space over K and let G −→ GL(V ) be a representation of

G on V . Thus G acts on V by automorphism and this action can be uniquely

extended to the symmetric algebra

S(V ) := ⊕∞
j=0V

⊗j/〈{a ⊗ b − b ⊗ a; a, b ∈ V }〉.

A choice of basis for V gives us an explicit isomorphism S(V ) ∼= K[x1, . . . , xn]

with V corresponding to the space of variables ⊕n
i=1Kxi. The action of G on V

becomes an action by linear substitutions of the variables, i.e., for each g ∈ G

we have g · xi =
∑n

j=1 aijxj for some aij ∈ K that are determined by g. This

justifies the name linear action. The resulting invariant algebra S(V )G is often

referred to as an algebra of polynomial invariants.

Example 1.3.1. Let G = Sn be the symmetric group of all permutations on

the set {1, . . . , n} acting on K[x1, . . . , xn] by g · xi = xg(i), for g ∈ G. The

resulting invariant algebra is K[σ1, . . . , σn], where

σr =
∑

1≤i1<...<ir≤n

xi1 · · ·xir , r = 1, . . . , n

is the rth elementary symmetric polynomial.

1.3.2 Basic Problems of Invariant Theory

In the setting of §1.3.1, it is certainly of great significance to know whether

or not the invariant algebra, S(V )G, has a certain finite description. Below are

several interpretations of finiteness.



4

1. Algebraic Finiteness

We know that S(V ) ∼= K[x1, . . . , xn] is K-affine, i.e., finitely generated as

an algebra over K. Now the problem on algebraic finiteness asks:

Is S(V )G also finitely generated as algebra over K?

The answer is positive, even in a more general setting:

Theorem 1.3.2 (E. Noether [No16]). Suppose G is a finite group acting

by automorphism of a finitely generated commutative K-algebra A. Then AG

is also a finitely generated commutative K-algebra and A is finitely generated

as a module over AG.

There exists versions of Theorem 1.3.2 for actions of certain infinite groups,

but the theorem is not valid in general if G is an infinite group. In fact, this

question for an arbitrary group acting linearly on K[x1, . . . , xn] is Hilbert’s

famous 14th problem. In 1959 Nagata gave a counterexample showing that the

invariant subring of certain “exotic” matrix groups are not finitely generated.

The next result tells us where to look for actual generators of algebras of

polynomial invariants.

Theorem 1.3.3 (P. Fleischmann [Fl], J. Fogarty [Fo]). Suppose ρ : G ↪→

GLn(K) is a representation of a finite group G such that char(K) does not

divide the order of G. Then the algebra of polynomial invariants K[x1, . . . , xn]G

is generated by G-invariant polynomials of degree at most |G|.

The bound |G| provided by the theorem is is known as Noether’s degree

bound. Indeed the result was first proved by E. Noether in characteristic zero

[No16], and her proof remains valid as long as the characteristic of K is bigger

than |G|. For a long time it was an open question as to whether it is in fact

sufficient to require only that char(K) does not divide |G|. This case is usually

referred to as the “non-modular case”.

Returning to the general setting of Theorem 1.3.2, the condition that AG

is affine allows us to apply another fundamental result of Noether:
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Theorem 1.3.4 (Noether Normalization Lemma). Let A be an affine

commutative K-algebra. Then there exists y1, . . . , yn ∈ A which are alge-

braically independent over K and such that A is a finite module over the poly-

nomial subalgebra K[y1, . . . , yn] of A.

In view of this result, we may find invariants y1, . . . , yn ∈ AG which are

algebraically independent over K and such that the invariant algebra AG is a

finite module over the subalgebra K[y1, . . . , yn]. The invariants y1, . . . , yn are

called “primary invariants”; they are by no means uniquely determined.

2. Homological Finiteness

If S(V )G = K[f1, . . . , fm] is finitely generated, we may define an epimor-

phism

ρ : K[t1, . . . , tm] � S(V )G : ti 7→ fi

from the polynomial algebra K[t1, . . . , tm] with m-variables to the invariant al-

gebra. The kernel of ρ is called the “first Syzygy module” denoted Syz1. Sup-

pose Syz1, . . . , Syz` have already been defined. Choose a generating set of min-

imal size for Syz` as K[t1, . . . tm]-module, and let L`+1 be a free K[x1, . . . , xm]-

module with basis in bijective correspondence with this generating set. Thus

we have a canonical epimorphism L`+1 � Syz`. The kernel of this epimor-

phism is the next syzygy module, Syz`+1. Now the problem of homological

finiteness is the following:

Are the syzygy modules of S(V )G finitely generated? Is the syzygy
chain finite? That is, does one have Syz` = 0 for some `?

These questions are answered in the positive by two fundamental results of

Hilbert:

Theorem 1.3.5 (Hilbert’s Basis Theorem). Every submodule of a finitely

generated K[x1, . . . , xn]-module is finitely generated.
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Theorem 1.3.6 (Hilbert’s Syzygy Theorem). Any module M over the

polynomial algebra K[x1, . . . , xn] has a finite free resolution of length at most

n, i.e., there is a chain of K[x1, . . . , xn]-module homomorphism

0 −→ Fs
ϕs
−→ . . . −→ F1

ϕ1

−→ F0
ϕ0

−→ M −→ 0

with im(ϕi) = ker(ϕi−1), i ≤ n and such that all Fi are free modules. If M is

finitely generated then F0, . . . , Fs may be chosen finitely generated as well.

3. Combinatorial Finiteness

A K-algebra A is graded (by Z+) if A = ⊕∞
j=0Aj, where each Aj is a K-

vector space and multiplication is compatible with the decomposition, i.e.,

Ai · Aj ⊆ Ai+j.

For example, if A is the polynomial algebra K[x1, . . . , xn] then we may

define Aj to be the vector space of homogeneous polynomials of total degree

j.

In general, if A is affine and connected (i.e. A0 = K) then it is easy to see

that all Aj are finite dimensional over K. The Poincaré series of such a graded

algebra is defined to be the generating function

Pt(A) =

∞
∑

j=0

(dimK Aj)t
j ∈ Z[[t]]

Example 1.3.7. The Poincaré series for the polynomial algebra K[x] is

Pt(K[x]) = 1 + t + t2 + ... =
1

1 − t

More generally,

Pt(K[x1, . . . , xn]) = (
1

1 − t
)n

All this applies to algebras of polynomial invariants K[x1, . . . , xn]G for finite

group G, since they are affine and connected. Therefore the combinatorial

finiteness question is:

Does there exist a simple formula for the Poincaré series of the ring
of invariants?
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In characteristic 0, the answer is provided by the following result which is

extensively used in algorithms for finding generators for the invariant algebra

K[x1, . . . , xn]G.

Theorem 1.3.8 (T. Molien [Mo]). Let ρ : G ↪→ GLn(K) be a representation

of a finite group G over a field K of characteric zero. Then the Poincaré series

for the ring of invariants is given by

Pt(K[x1, . . . , xn]G) =
1

|G|

∑

g∈G

1

det(1 − gt)

One important observation from the above theorems is that they all assume

finiteness of the acting group G. We will concentrate on finite groups from now

on and turn to some open questions concerning their invariant algebras next.

1.3.3 Open Problems for Finite Groups

1. Cohen-Macaulay Problem: Let ρ : G ↪→ GLn(K) be a representation

of a finite group over the field K and let y1, . . . , yn ∈ K[x1, . . . , xn]G be a set

of primary invariants; so K[x1, . . . , xn]G is a finitely generated module over

K[y1, . . . , yn]. Can one say more about this module structure? In the non-

modular case, the answer is provided by the following result.

Theorem 1.3.9 (Hochster and Eagon [HE71]). If ρ : G ↪→ GLn(K) is a

representation of finite group and char(K) does not divide |G| then K[x1, . . . , xn]G

is free over K[y1, . . . , yn].

In the language of commutative algebra, the conclusion of the theorem

states that K[x1, . . . , xn]G is a Cohen-Macaulay ring. In the modular case (i.e.,

when char(K) divides |G|), the result is no longer valid. It is one of the most

important open problems on polynomial invariants to determine exactly when

they are Cohen-Macaulay.

2. Polynomial Algebra Problem: We know that the rings we started

with, the polynomial algebras, are particularly nice in that they are generated
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by a system of n parameters which is exactly equal to its Krull dimension.

This is not always the case for the invariant algebra. Therefore the following

question arises:

For which finite groups G ↪→ GLn(K) and which fields K is K[x1, . . . , xn]G

again a polynomial algebra?

The answer to this classical problem in invariant theory, in the non-modular

case, is due to Shephard, Todd and Chevalley.

Theorem 1.3.10 (Shephard-Todd-Chevalley Theorem [ST54, Ch55]).

Suppose that the finite group G acts linearly on the symmetric algebra S(V ) of

the finite dimensional K-vector space V and that the characteristic of K does

not divide the order of G. Then the following are equivalent

(i) The invariant algebra S(V )G is a polynomial algebra over K.

(ii) G acts as a pseudoreflection group on V .

Here, an element g ∈ G is called a pseudoreflection on V if the linear transfor-

mation IdV −g of V has rank 1. A group is called a pseudoreflection group on

V if G can be generated by pseudo-reflections on V . We will present a detailed

study of reflection groups in Chapter 3. It was observed by Serre [Se67] that

the implication (i) ⇒ (ii) in the Shephard-Todd-Chevalley Theorem works in

any characteristic. This is however not true of (ii) ⇒ (i): there are reflec-

tion groups whose polynomial invariants in the modular case are not even

Cohen-Macaulay, let alone polynomial algebras; see [Nak80]. It is an open

problem at present to determine exactly when modular polynomial invariants

of reflection groups are polynomial algebras.

1.4 Multiplicative Actions

During the past 20 years another branch of invariant theory, known as

multiplicative invariant theory, has established itself as an independent branch
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of invariant theory in its own right, beginning with the work of D. Farkas

in the 80’s [Fa84, Fa85]. Prior to Farkas, only a few isolated results on

multiplicative invariants, also called “exponential invariants” or “monomial

invariants”, were known, notably in the work of Bourbaki [Bo68], Steinberg

[Ste75] and Richardson [Ri82].

Multiplicative invariants arise from lattices, that is, from free abelian groups

of finite rank, and their group algebras. Traditionally, a lattice A of rank n is

identified with Zn by choosing a basis. Hence the usual notation for lattices is

additive. However, when viewed inside its group algebra, the lattice has to be

thought of a multiplicative subgroup. We indicate this passage from the ad-

ditive to the multiplicative setting by adopting a formal exponential notation.

In detail, the group algebra K[A] has a K-basis A = {xa| a ∈ Zn} labelled by

the elements of Zn. Multiplication in K[A] is defined by K-linear extension of

the rule

x
a
x

b = x
a+b.

Thus, A is a subgroup of the group of (multiplicative) units of the algebra K[A].

The group algebra K[A] can be thought of as a Laurent polynomial algebra:

K[A] ∼= K[x±1
1 , x±1

2 , ..., x±1
n ]

via the group isomorphism

A ∼= 〈x±1
1 , . . . , x±1

n 〉mon : x
a 7→ xa1

1 · · ·xan

n , where a = (a1, . . . , an) ∈ Zn

Thus the subgroup A = {xa : a ∈ Zn} corresponds to the group of “monomials”

in the Laurent polynomial algebra K[x±1
1 , x±1

2 , ..., x±1
n ].

Now let G be a group with representation G → GL(A) ∼= GLn(Z), the

homomorphism induces an an action on A which can be uniquely extended to

an action by K-algebra automorphisms on K[A]. Explicitly, the action of G on

K[A] is given by

g · xa = x
g·a ∈ A, (g ∈ G, xa ∈ A)
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This action stabilizes the multiplicative group of monomial units A. Hence

the name “multiplicative” or “monomial” action. One notable feature of mul-

tiplicative actions is the fact that the degree of Laurent polynomials (i.e. the

grading of the algebra) is not preserved under the action. This is in sharp con-

trast with the case of linear actions and causes a great deal of added difficulty

in the investigation of multiplicative invariants.

1.5 Some Results on Multiplicative Invariants

Below we give a brief survey of some results in multiplicative invariant

theory. Most of the results we list here are related to the polynomial algebra

problem for linear actions. In the multiplicative case, the analogous problem

would ask when the invariant algebra K[A]G is again a Laurent polynomial

algebra or, equivalently, a group algebra. However, a simple argument (see

[Lo01]) shows that, this happens only when G acts trivially. On the other

hand, there are several interesting results in the literature that are in the

spirit of the Shephard-Todd-Chevalley Theorem.

For all the theorems below we keep the following notations: A is a free

abelian group of rank n, G ≤ GL A ∼= GLn(Z) a finite group, K[A] the group

algebra and K[A]G is the algebra of multiplicative invariants.

Farkas [Fa84, Fa86]: The invariant algebra C[A]G is a polynomial algebra

over C iff A is isomorphic as a G-module to the weight lattice of some root

system with Weyl group G.

Lorenz [Lo96]: If char(K) - |G|,then the following are equivalent:

(i) The algebra of invariants K[A]G is regular.

(ii) K[A] is free as K[A]G-module.

(iii) K[A]G is a mixed Laurent polynomial algebra, i.e.
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K[A]G ∼= K[x±1
1 , . . . , x±1

r , xr+1, . . . , xd]. Here, necessarily, r = rank AG and

d = rank A.

(iv) G is a reflection group and H1(G, AD) = 0, where D ≤ G is generated

by the reflections that are diagonalizable over Z and AD denotes the

D-invariants in A.

Lorenz [Lo01]: If G acts as a reflection group on A then the invariant algebra

K[A]G is a semigroup algebra K[M], where the structure of the monoid M is

known.

Here, semigroup algebras K[M] are defined exactly as ordinary group alge-

bras (see §1.4), except that M is merely required to be a semigroup and hence

does not necessarily consist of units in K[M].

Reichstein [Re03]: The following are equivalent:

(i) K[A]G has a finite SAGBI1 bases.

(ii) G is a reflection group on A.

My focus is on the last of Lorenz’s results: multiplicative invariants of

finite reflection groups are affine normal semigroup algebras. I will refer to

this result throughout as Lorenz’s Theorem.

Here we want to emphasize that affine normal semigroup algebras are an

interesting class of algebras:

(i) They are common generalizations of polynomial and Laurent polyno-

mial algebras.

(ii) Their fields of fractions are rational over the base field. This answers

the so-called “rationality problem” when G is a reflection group. In general,

1The term SAGBI from computational algebra stands for Sublgebra Analogue to Gröbner

Bases for Ideals. We will give a detailed definition later.
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Hajja and Kang [Ha87, HK92, HK94] established rationality of multiplica-

tive invariant fields of ranks 2 and 3, except for one case in rank 3 which is

still undecided. The approach of Hajja and Kang is computational case by

case investigating each of the (finitely many) possible groups.

(iii) Projective modules over affine normal semigroup algebras are free,

(Gubeladze’s theorem [Gu92]). In view of (i) this a far reaching generalization

of the celebrated Quillen-Suslin Theorem for polynomial rings.

1.5.1 Problem (“Semigroup Algebra Problem”)

In view of the already mentioned facts concerning semigroup algebras

Lorenz’s theorem, along with the envisioned converse, would be a powerful

analogue to the Shephard-Todd-Chevalley theorem of linear actions. But the

converse of Lorenz’s theorem is an open, although Lorenz has a significant

result in that direction obtained by using geometric methods.

Thus we formulate the following problem:

If the invariant algebra K[A]G is a semigroup algebra over K, must G act

as a reflection group on A?

1.5.2 Our Contribution

We will answer the above question from a little different perspective. In

Chapter 4 we will rework the proof of Lorenz’s theorem using SAGBI bases

and simplicial cones following Reichstein’s work [Re03]. The core idea used

in Lorenz’s original proof can be rephrased in the language of simplicial cones

which results in a conceptually simpler proof avoiding the machinery of root

systems that was used in [Lo01]. We restrict ourselves to the case where G

acts effectively on Zn, that is, (Zn)G = {0}.

In detail, consider a total ordering, �, on the lattice A ∼= Zn that is com-

patible with the addition operation, i.e. a � b ⇒ a + c � b + c; (a, b, c ∈ Zn).

We will discuss such orderings in §2.7.1 in detail and in particular exhibit a
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simple example.

For each nonzero Laurent polynomial

f =
∑

i

kix
ai ∈ K[A] ∼= K[x±1

1 , . . . , x±1
n ]

define

I (f) := max
i

{ai|ki 6= 0} ∈ Zn

This gives a monoid homomorphism

I : (K[A] \ {0}, · ) −→ (Zn, +)

called the initial map. In Chapter 4, we will prove that, when G acts as

a reflection group on A, then K[A]G is a semigroup algebra K[M] for some

submonoid M ⊆ (K[A] \ {0}, · ) such that the restriction of the initial map to

M is injective. Moreover the converse of this statement is also true. Hence we

have the following result which summarizes our contribution to the semigroup

algebra problem.

Theorem 1.5.1. Assume that G acts effectively on Zn. Then the following

are equivalent:

(i) G acts as a reflection group on Zn.

(ii) There exists a monoid M ⊆ (K[A]G , ·) such that K[A]G = K[M] is a semi-

group algebra and the initial map I is injective on M.
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CHAPTER 2

PRELIMINARIES

2.1 Overview

We will start by providing the basic definitions and facts concerning monoids,

semigroup algebras, and group actions. In particular, we will prove Maschke’s

theorem for further application. We proceed by introducing polyhedral cones

which will play a crucial role in the proof of our main result, Theorem 1.5.1.

Next, returning to multiplicative actions, we will illustrate the definitions given

in the Introduction with some explicit examples. The chapter concludes with

a section on fundamental domains for multiplicative actions.

2.2 Monoids

A monoid is a set M with an associative operation µ : M × M → M and

identity element. The monoid M is called commutative if µ(a, b) = µ(b, a)

holds for all a, b ∈ M . Some examples of commutative monoids are Z with

multiplication (identity element 1) and Zr⊕Zs
+ with addition (identity element

(0, . . . , 0)). We will only be concerned with commutative monoids in this

thesis and therefore usually use additive notation for the operation of M ; so
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µ(a, b) = a+ b for a, b ∈ M , na = a+ · · ·+a (n summands) for a ∈ M , n ∈ N,

and 0 denotes the identity element of M . However, in the setting of semigroup

algebras, we will consider multiplicative monoids. We will use the notation M

to emphasize this fact; see §2.3 below.

Submonoids and monoid homomorphisms are defined as usual. The inter-

section of any family of submonoids of a given monoid M is again a submonoid

of M . In particular, for any subset S ⊆ M , there is a unique smallest sub-

monoid of M which contains S; it will be denoted by 〈S〉mon. Using the above

additive notation, the elements of 〈S〉mon can be thought of as the finite Z+-

linear combinations of elements of S. The monoid M is called finitely generated

if M = 〈S〉mon for some finite subset S ⊆ M .

Definition 2.2.1. A commutative monoid (M, +) is called

cancellative if a + c = b + c ⇒ a = b for all a, b, c,∈ M

torsion-free if na = nb ⇒ a = b, for a, b ∈ M and n ∈ N

Every commutative monoid M has a group of fractions, denoted Mgp; it

can be constructed as

Mgp = M × M/ ∼

with componentwise operation. Here, ∼ is an equivalence relation on M × M

given by

(a, b) ∼ (c, d) ⇔ ∃ m1, m2 ∈ M : m1 + a = m2 + c & m1 + b = m2 + d

The map

ν : M −→ Mgp
∼= M × M/ ∼ : a 7→ (a, 0)/ ∼

is a monoid homomorphism, called the “canonical” homomorphism.

Lemma 2.2.2. Let (M, +) be a finitely generated commutative monoid. Then

M is isomorphic to a submonoid of Zr (with +) for some r ∈ N if and only if

M is both cancellative and torsion free.
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Proof. The implication ⇒ is trivial, since Zr is cancellative and torsion free

and these properties are inherited by all submonoids.

For ⇐, we use the canonical homomorphism ν : M → Mgp. Note first that

since M is finitely generated it follows that Mgp is a finitely generated abelian

group. Therefore, it will suffice to prove the following two facts:

(i) ν is injective.

(ii) the group Mgp is torsion-free (and hence Mgp
∼= Zr for some r ∈ N, by

the fundamental theorem of finitely generated abelian groups [DF99,

Thm.5.2.3]).

Proof for (i): Let ν(a) = ν(b), that is (a, 0) ∼ (b, 0). Then there exists

m1, m2 ∈ M such that m1 + a = m2 + b and m1 + 0 = m2 + 0. The latter

equality implies m1 = m2. Hence from the first equality and the fact that M

is cancellative, we get a = b. This proves (i).

Proof for (ii): Let (a, b) ∈ Mgp be a torsion element. That is n(a, b) =

(na, nb) ∼ (0, 0) for some n ∈ N. Thus there exists m1, m2 ∈ M such that

m1+na = m2+0 and m1+nb = m2+0. It follows that m1+na = m2 = m1+nb.

Since M is cancellative, we deduce that na = nb, and since M is torsion free,

we obtain that a = b. Finally, one can easily see that (a, a) ∼ (0, 0). Therefore

Mgp has no non-trivial torsion element, proving (ii). Hence the lemma is

proved.

2.3 Semigroup Algebras

In this section, K denotes an arbitrary base field.

Definition 2.3.1. A K-algebra A is called a semigroup algebra if there exists

a submonoid M ⊆ (A, ·) such that the elements of M form a K-basis of A.

Example 2.3.2. 1. The polynomial algebra K[x1, . . . , xn] and Laurent poly-

nomial algebra K[x±1
1 , . . . , x±1

n ] are both semigroup algebras. The monoids M
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in question are given by M = 〈x1, . . . , xn〉mon
∼= (Zn

+, +) in the first case and

M = 〈x±1
1 , . . . , x±1

n 〉mon
∼= (Zn, +) in the second.

2. The algebra K[x2, xy, y2] is a semigroup algebra since elements of the

monoid M = 〈x2, xy, y2〉mon form a K-basis of K[x2, xy, y2]. One can show that

the monoid M is not isomorphic to a monoid of the form Zr ⊕ Zs
+.

Proposition 2.3.3. Let K[M] be a semigroup algebra. Then;

(i) K[M] is a finitely generated (affine) K-algebra if and only if M is a finitely

generated monoid.

(ii) K[M] is a domain if and only if M is cancellative and torsion-free.

Proof. (i). The implication ⇐ is trivial. For ⇒, assume the K-algebra K[M] is

generated by f1, . . . , fr say. Each fi can be written in terms of the basis M of

K[M]; this requires finitely many elements m1, . . . , ms ∈ M. We claim that M =

〈m1, . . . , ms〉mon. For this, let a ∈ M be arbitrary. Then a = P (f1, . . . , fr) =

Q(m1, . . . , ms) for suitable polynomials P and Q with coefficients in K. Note

that Q(m1, . . . , ms) is a K-linear combination of monomials in the m′
is; these

are elements of M. By K-independence of M, we conclude that a is a monomial

in the mi. In other words, a ∈ 〈m1, . . . , ms〉mon. Hence, M is generated by

m1, . . . , ms.

(ii). The implication ⇐ follows from Lemma 2.2.2. Indeed, our hypotheses

on M imply that M embeds into Zr for some r, and hence K[M] embeds into

K[x±1
1 , . . . , x±1

n ]. Since K[x±1
1 , . . . , x±1

n ] is a domain, so is K[M]. For the converse

(which is not difficult), see [Gi84, Theorem 8.1].

2.4 Group Actions

Definition 2.4.1. An action of a group G on a set E is a map

G × E −→ E : (g, a) 7→ g · a, (g ∈ G, a ∈ E)

such that 1 · a = a and g1 · (g2 · a) = (g1g2) · a holds for each a ∈ E and

g1, g2 ∈ G. Here, 1 denotes the identity element of G.
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Equivalently, an action of a group G on E amounts to a group homomor-

phism

ρ : G −→ perm(E)

where perm(E) is the group of all permutations of E.

If V is a vectorspace over a field K and the action of G on V also satisfies

g · (v1 + v2) = (g · v1) + (g · v2) and g · (kv) = k(g · v)

for all v, vi ∈ V and k ∈ K then we say that G acts on V by K-automorphism.

This amounts to having a group homomorphism, called a representation,

ρ : G −→ GL(V )

where GL(V ) is the group of all invertible K-linear transformations of V . A

vector space V admitting a G-action is called K[G]-module.

Given a K[G]-module V , a subspace V ′ ⊂ V is called stable under G if

g(V ′) ⊂ V ′ for all g ∈ G, i.e. V ′ is itself a K[G]-module. A representation

ρ : G −→ GL(V ) is said to be completely reducible if, given a G-stable subspace

V ′ ⊂ V , there exists a G-stable subspace V ′′ ⊂ V such that V = V ′ ⊕ V ′′.

Theorem 2.4.2 (Maschke’s Theorem). If V is a vector space over a field

K and char(K) does not divide |G|, then every representation

ρ : G −→ GL(V )

is completely reducible.

Proof. Suppose V ′ ⊂ V is stable under G. Let p : V −→ V be any K-linear

projection with Im(p) = V ′. Define a map p̂ : V −→ V by

p̂(v) =
1

|G|

∑

g∈G

g−1 · p(g · v)

One can easily verify that

(i) p̂(σ · x) =
1

|G|

∑

g∈G

g−1p(gσ · x) = σ
1

|G|

∑

g∈G

(gσ)−1p((gσ) · x)

= σp̂(x), ∀σ ∈ G, x ∈ V.

(ii) Im(p̂) = V ′ and p̂
∣

∣

V ′ = IdV ′ .
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These properties imply that ker(p̂) is a complement of V ′ which is G-stable.

Definition 2.4.3. Let G be a group acting on E and a ∈ E we define the orbit

of a to be the set Oa := {g · a : g ∈ G}.

The distinct G-orbits form a partition of E. Any subset of E containing

exactly one representative from each orbit is called a fundamental domain for

the action of G on E. We will study fundamental domains of multiplicative

actions later in detail as they play an important role in multiplicative invariant

theory. It will turn out that certain fundamental domains will be geometric

objects in Rn known as polyhedral cones. Therefore, we study polyhedral

cones in the next section.

2.5 Basics on Polyhedral Cones

A subset C of Rn is called a cone if
∑m

i=1 rici ∈ C holds for all ci ∈ C and

ri ∈ R+. Clearly, intersections of cones are cones. The smallest cone in Rn

containing a given subset X of Rn is

C = Pos(X) = {
∑

x∈X

rxx : x ∈ X, rx ∈ R+ almost all zero};

it is called the cone generated by X. If X ⊆ Zn we call C an integral cone,

and if X is finite the cone C will be called a polyhedral cone. Clearly, integral

polyhedral cones are exactly those cones that can be generated by finite subsets

X ⊆ Zn.

Let (Rn)∗ = Hom(Rn, R) ∼= Rn be the dual of Rn, with dual pairing <, >.

For any cone C in Rn we define the dual cone, C∨, by

C∨ = {f ∈ (Rn)∗ :< f, c > ≥ 0 ∀c ∈ C}

It follows from the definition that C∨ is also a cone. Moreover, if C is an

integral polyhedral cone then so is C∨; see [Ew96, Theorem V.2.10].

Definition 2.5.1. Given a cone C ⊆ Rn, we define
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(i) a face F of C to be a subset of the form

F := C ∩ f⊥ = {c ∈ C :< f, c >= 0} for some f ∈ C∨.

Each face is again a cone in Rn.

(ii) the dimension of C to be the dimension of the subspace generated by C.

(iii) the facets of C to be the faces F of C with dim F = dim C − 1. Faces

of dimension one are called edges of the cone.

We state below some basic facts about polyhedral cones for future use.

Lemma 2.5.2. A polyhedral cone is a closed subset of Rn.

Proof. Let C ⊆ Rn be a polyhedral cone; so C = Pos(v1, . . . vk) =
∑k

i=1 R+vi

for suitable vi ∈ Rn. Clearly, the rays R+vi are all closed subsets of Rn.

Moreover, for any two closed subsets A and B of Rn, the “Minkowski sum”

A + B = {a + b | a ∈ A, b ∈ B} is again a closed subset of Rn; see, e.g.,

[Ew96, p. 103/4]. The assertion now follows by induction, because C is the

Minkowski sum of the rays R+vi for i = 1, . . . , k.

Note that any cone C ⊆ Rn is in particular a submonoid of (Rn, +), and

hence so is C ∩ Zn.

Lemma 2.5.3 (Gordan’s Lemma). Let C be an integral polyhedral cone in

Rn, then, the monoid C ∩ Zn is finitely generated.

Proof. Write C = Pos{v1, . . . , vk} with vi ∈ Zn. Consider the set

F := {
k
∑

i=1

λivi | 0 ≤ λi ≤ 1} ,

a compact subset of Rn. Since F ∩C ∩Zn is a discrete subset of F , it must be

finite. Now we claim that F ∩C∩Zn generates C∩Zn. For this, let v ∈ C∩Zn

and write v =
∑k

i=1 rivi with ri ∈ R+. Now write each ri = [ri] + {ri} where

[ri] and {ri} are the integer and fractional parts of ri respectively. Hence
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v =
∑k

i=1[ri]vi +
∑k

i=1{ri}vi. But
∑k

i=1{ri}vi = v −
∑k

i=1[ri]vi ∈ C ∩ Zn.

Since 0 ≤ {ri} < 1, it follows that
∑k

i=1{ri}vi ∈ F ∩ C ∩ Zn. This proves the

lemma.

Let us close this section by proving two standard facts for future use.

Lemma 2.5.4. (i) Any finite dimensional vector space over an infinite field

cannot be expressed as a finite union of proper subspaces.

(ii) If a cone C in Rn satisfies C ⊆
⋃m

1 Wi for subspaces Wi ⊆ Rn then C ⊆

Wi for some i. In particular, the subspace generated by C is contained

in Wi.

Proof. (i). Assume to the contrary that V is a finite dimensional vector space

over an infinite field K so that V =
⋃m

i=1 Wi , where Wi ( V . We can assume

m minimal; so
⋃

j 6=i Wj ( V . This allows us to pick wi ∈ Wi \
⋃

j 6=i Wj.

Since clearly m ≥ 2, let’s consider the infinite subset {w1 + kw2 : k ∈ K} of

V . At least two distinct elements, say w1 + k1w2 and w1 + k2w2, belong to

same subspace, say Wj, for some j. Hence w2 = 1
k1−k2

[(w1 + k1w2) − (w1 +

k2w2)] ∈ Wj. Since w2 belongs only to W2, we must have j = 2. But then

w1 + k1w2 ∈ Wj = W2, whence w1 ∈ W2. This contradicts the choice of wi,

thereby proving part (i).

(ii). The above argument works with only minor modifications. Indeed,

assume that C ⊆
⋃m

1 Wi and that m is minimal; so C is not contained in
⋃

j 6=i Wj for any i. Our goal is to show that m = 1. Suppose that m ≥ 2. Pick

wi ∈ C\
⋃

j 6=i Wj; so wi ∈ Wi. Consider the infinite subset {w1+rw2 : r ∈ R+}

of C and argue exactly as above to reach a contradiction.

2.6 Multiplicative Actions, Again

We review the setting of multiplicative actions as introduced in §1.4 and

illustrate it by discussing some examples.



22

Let G ≤ GLn(Z) be a finite integral matrix group. Then G acts on column

vectors (n×1 matrices) from Zn, Qn or Rn by ordinary matrix multiplication.

Recall that every element of the group algebra K[A] of the lattice Zn can be

uniquely written in the form

∑

a∈Zn

kax
a with ka ∈ K almost all zero.

Here, A = {xa| a ∈ Zn} is the canonical K-basis of K[A]. Putting

xi = x
ei ,

where ei ∈ Zn is the basis element of Zn with 1 in the ith component and 0s

elsewhere, the group algebra K[A] becomes the Laurent polynomial algebra in

the variables xi:

K[A] = K[x±1
1 , . . . , x±1

n ] .

The G-action on Zn gives rise to an action by K-algebra automorphism on K[A]

as follows:

G × K[A] −→ K[A] : (g,
∑

a∈Zn

kax
a) 7→

∑

a∈Zn

kax
g·a .

We will use the notation g(f) or g · f for the image of f ∈ K[A] under g ∈ G.

The following example illustrates this action.

Example 2.6.1. S = K[x±1, y±1]. Note here that Z2 ∼= 〈x±1, y±1〉mon via

(1, 0) 7→ x, (0, 1) 7→ y. In general, (a, b) 7→ xayb Now let g =
(

2 −5
−3 8

)

∈

GL2(Z). We calculate the images of x, y, and 5x2y−3 + 7xy4 − 12 under the

action of g:

g(x) ↔ g((1, 0)) = (2,−3) ↔ x2y−3

g(y) ↔ g((0, 1)) = (−5, 8) ↔ x−5y8

g(5x2y−3 + 7xy4 − 12) = 5g(x2)g(y−3) + 7g(x)g(y4) − 12

= 5g(x)2g(y)−3 + 7g(x)g(y)4 − 12

= 5(x2y−3)2(x−5y8)−3 + 7(x2y−3)(x−5y8)4) − 12

= 5x19y−30 + 7x−18y29 − 12
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Notation: The following notations will be used henceforth. The group algebra

K[A] (or Laurent polynomial algebra) will be denoted by S; so

S = K[A] = K[x±1
1 , . . . , x±1

n ] .

Throughout, G ≤ GLn(Z) will be a finite group acting multiplicatively on

S. The subalgebra of all Laurent polynomials that are invariant under the

G-action is known as algebra of multiplicative invariants ; it will be denoted by

R := S
G .

There is a standard method of producing invariant elements as follows.

Given f ∈ S we define the orbit sum, ϑ(f), of f to be the Laurent polynomial

ϑ(f) =
∑

f ′∈Of

f ′ ,

where Of := {g · f : g ∈ G} is the G-orbit of f ; see Definition 2.4.3. Observe

that ϑ(f) is certainly a G-invariant element. The most important orbit sums

are those where f = xa ∈ A is a monomial. In this case, we will usually write

ϑ(a) instead of ϑ(xa). It is easily seen that

R =
⊕

a∈G\A

Kϑ(a) ,

where G\A denotes any transversal for the G-orbits in A.

Example 2.6.2. Let Sn be the symmetric group of all permutations on the

set {1, . . . , n}, let {ei}
n
1 denote the standard basis of Zn and put xi = xei ∈

S = K[A], as above. Then Sn acts on Zn via s(ei) = es(i) (s ∈ Sn) and this

action gives rise to the following action on S:

s(xi) = xs(i) (s ∈ Sn) .

The orbit sum of the monomial xe1+···+ei = x1x2 . . . xi ∈ S is the ith elementary

symmetric function

σi =
∑

j1<...<ji

xj1xj2 . . . xji
;
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see Example 1.3.1. In particular, σn = x1x2 . . . xn. But observe that

S = K[x±1
1 , . . . , x±1

n ] = K[x1, . . . , xn][σ−1
n ] .

By Example 1.3.1, K[x1, . . . , xn]Sn = K[σ1, . . . , σn]. Therefore,

R = S
Sn = K[σ1, . . . , σn−1, σ

±1
n ] ,

a mixed Laurent polynomial algebra in n variables, with 1 variable inverted.

2.7 Fundamental Domains

We recall the notion of a fundamental domain; it was already briefly men-

tioned in §2.4.

Definition 2.7.1. Suppose a group G acts on a set E. We call a subset

F ⊆ E a fundamental domain for the action if each G-orbit in E intersects F

in exactly one point. This is equivalent to the following two conditions:

(a) For every v ∈ E, there exists g ∈ G such that g · v ∈ F , and

(b) If some v1, v2 ∈ F and g ∈ G satisfy v1 = g · v2 then v1 = v2.

Lemma 2.7.2. let G be a finite group acting by automorphisms on a finite

dimensional vector space V and let F be a fundamental domain for the G-

action. Then dim(F ) = dim(V ), where dim(F ) denotes the dimension of the

subspace of V that is generated by F .

Proof. Assume to the contrary that dim(F ) < dim(V ). Then, since V =

∪g∈Gg(F ) and dim(F ) = dim(g(F )), it follows that V is a finite union of

proper subspaces, contradicting Lemma 2.5.4.

2.7.1 Term Orders

A partial ordering on a set S is a relation, denoted by ≥, satisfying:
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(i) a ≥ a for all a ∈ S (reflexive property)

(ii) If a ≥ b and b ≥ a then a = b (antisymmetric property)

(iii) If a ≥ b and b ≥ c then a ≥ c (transitive property)

If, in addition, the partial ordering satisfies the additional property;

(iv) For any a, b ∈ S either a ≥ b or b ≥ a

then we call the partial order a linear ordering (or total ordering). We will

be primarily interested in certain linear orderings on Rn that are compatible

with addition and scalar multiplication. Explicitly, we will assume that our

ordering of Rn also satisfies the following conditions:

(v) a ≥ b ⇒ a + c ≥ b + c for all c ∈ Rn;

(vi) a ≥ b ⇒ ra ≥ rb for all r ∈ R+.

Such a linear order of Rn will be called a term order. There are several term

orderings on Rn; here is a particularly simple and well-known example:

Lexicographic Ordering: Let (a1, . . . , an), (b1, . . . , bn) ∈ Rn. The lexico-

graphic (dictionary) order on Rn, denoted �lex, is defined by (a1, . . . , an) �lex

(b1, . . . , bn) if and only if the first non zero entry of (a1, . . . , an)−(b1, . . . , bn) =

(a1 − b1, . . . , an − bn) is positive. For example, if α = (−1, 7, 50) and β =

(−1, 8, 0) then β − α = (0, 1,−50). Hence, β �lex α. One can easily see that

�lex is indeed a term order on Rn.

Notation: In the following � will denote an arbitrary term ordering of Rn.

Definition 2.7.3. Given a finite subgroup G ≤ GLn(Z) acting on Zn and Rn

by matrix multiplication, as before, we define:

(i) A�(G) := {a ∈ Zn : a � g · a ∀g ∈ G},

(ii) X�(G) := {v ∈ Rn : v � g · v ∀g ∈ G}
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If no confusion arises we will suppress the G and simply write A� or X�

respectively.

Definition 2.7.4. A submonoid S of Zn is said to be saturated if ma ∈ S

for a ∈ Zn and m ∈ N implies that a ∈ S.

Lemma 2.7.5. (i) Zn ∩ X� = A�. The sets A� and X� are fundamental

domains for the G-action on Zn and Rn respectively. Moreover, A� is a

saturated submonoid of Zn.

(ii) Q+A� is a fundamental domain for the G-action on Qn. Furthermore

Qn ∩ Pos(A�) ⊆ Qn ∩X� = Q+A�; ( recall that Pos(A�) := R+A�).

(iii) Pos(A�) is a polyhedral cone if and only if A� is a finitely generated

semigroup. In this case it is a fundamental domain for the G-action on

Rn.

Proof. (i). The equality Zn ∩X� = A� is immediate from the definition since

the set Zn∩X� = {a ∈ Zn : a � g ·a, ∀g ∈ G} = A�. Next the fact that A� is

a fundamental domain for the G-action on Zn is also clear from the definition

of A�: every G-orbit in Zn has a unique largest element with respect to �,

and these largest elements form the set A�. Similar argument proves that X�

is a fundamental domain for the G action on Rn.

To complete (i) we also show A� is a saturated submonoid of Zn: Let

a, b ∈ A� and g ∈ G then a + b � g · a + g · b = g · (a + b). Therefore,

a + b ∈ A�. Since, clearly, 0 ∈ A�, this shows that A� is a submonoid of

Zn. In order to show that A� is saturated, note that for any v, w ∈ Rn and

m ∈ N, we have v � w ⇔ mv � mw. Thus, if a ∈ Zn satisfies ma ∈ A� then

ma � g · (ma) = m(g ·a) for all g ∈ G, and hence a � g(a). Therefore, a ∈ A�,

proving that A� is saturated.

(ii). We check conditions (a) and (b) in Definition 2.7.1 for Q+A�. For (a),

let α ∈ Qn and choose m ∈ N such that mα ∈ Zn. By (i), there exists g ∈ G

such that g · (mα) ∈ A�. Hence, g ·α = 1
m

g · (mα) ∈ Q+A�, which proves (a).
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To check (b), let α, β ∈ Q+A� such that α = gβ for some g ∈ G. Then choose

an m ∈ N such that mα, mβ ∈ A�. Now, g · mβ = m(g · β) = mα ∈ A�.

Therefore, mβ = mα, since A� is a fundamental domain. This in turn implies

that α = β, as required. This shows that Q+A� is a fundamental domain for

the G-action on Qn.

Now we show Qn ∩ R+A� ⊆ Qn ∩ X� = Q+A�: From the definition of �

it is clear that R+A� ⊆ X� and hence the inclusion Qn ∩ R+A� ⊆ Qn ∩ X�.

It is also evident that Q+A� ⊆ X�, but since Q+A� ⊆ Qn then we have the

inclusion Q+A� ⊆ Qn ∩ X�. Conversely the set Qn ∩ X� = {v ∈ Qn : v �

g · v, ∀g ∈ G} is a fundamental domain for the G-action on Qn. But since

we also proved that Q+A� is a fundamental domain for the G-action on Qn

we have inclusion of fundamental domains Q+A� ⊆ Qn ∩X�. This forces the

equality Q+A� = Qn ∩ X� completting the proof of (ii).

(iii). First lets start with A� is finitely generated semigroup then it triv-

ially follows that Pos(A�) is a polyhedral cone. Conversely, if Pos(A�) is

polyhedral (and hence integral polyhedral) then the semigroup Pos(A�)∩ Zn

is finitely generated by Gordan’s Lemma (Lemma 2.5.3). Furthermore by (i)

above and the fact that Pos(A�) ⊆ X� we have,

X� ∩ Zn = A� ⊆ Pos(A�) ∩ Zn ⊆ X� ∩ Zn

Hence we have equality Pos(A�) ∩ Zn = A�. Hence A� is finitely generated.

Continuing with our assumption that Pos(A�) is polyhedral, we check

conditions (a) and (b) in Definition 2.7.1. To prove (a), let v ∈ Rn and let

{vm}
∞
m=1 be a sequence in Qn converging to v. By (ii) we know that, for each

m, there exist gm ∈ G such that gm ·vm ∈ Q+A�. But since G is finite, there is

a subsequence {mj}
∞
j=1 such that {gmj

}∞j=1 is fixed element of G, say g0. Thus,

g0 · vmj
∈ Pos(A�) and limj→∞(g0 · vmj

) = g0 · (limj→∞ vmj
) = g0 · v. Since

Pos(A�) is closed, by Lemma 2.5.2, we conclude that g0 · v ∈ Pos(A�). Thus,

condition (a) is proved.

For (b), suppose that v1 = g · v2 for some v1, v2 ∈ Pos(A�) and g ∈

G. Thus, v1 ∈ Pos(A�) ∩ g[Pos(A�)]. By part (ii), every rational point in
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Pos(A�) ∩ g[Pos(A�)] is fixed by g. Moreover, Pos(A�) ∩ g[Pos(A�)] is an

integral cone (see, e.g., [Re03, Lemma 2.1(a)]), and so the rational points

in Pos(A�) ∩ g[Pos(A�)] are dense in Pos(A�) ∩ g[Pos(A�)]. Since g is

continuous, we conclude that every point of Pos(A�)∩ g[Pos(A�)] is fixed by

g. In particular, v1 = g · v1 = v2.

Some portions of (i) and (iii) are also proved, in a slightly different way, in

[Re03, Lemmas 2.6 and 2.8].

2.7.2 SAGBI Bases

In the polynomial algebra K[x] of one variable, the degree of a polynomial

f ∈ K[x] is the maximum exponent m ∈ Z+ of monomials in f . This idea can

be generalized to Laurent polynomial algebras in n-variables as follows. Recall

that � denotes a fixed term order on Rn (and hence on Zn).

Definition 2.7.6. Given 0 6= f =
∑

a∈Zn kax
a ∈ S := K[x±1

1 , . . . , x±1
n ], we

define the initial degree of f , denoted I (f), to be the largest exponent a ∈ Zn

(with respect to �) such that ka 6= 0.

For any subset T ⊆ S we put

I (T ) = {I (f) : 0 6= f ∈ T} .

Remark 2.7.7. It is easy to see that I (1) = 0 and

I (f1.f2) = I (f1) + I (f2)

for all 0 6= f1, f2 ∈ S. In other words,

I : (S \ {0}, · ) −→ (Zn, +)

is a monoid homomorphism. In particular, if T is a subalgebra (with 1) of S

then I (T ) is a submonoid of Zn.
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We can extend the above definitions verbatim to the group algebra SR =

K[AR], where we have put AR = {xv : v ∈ Rn}; the only difference is that initial

degrees no longer need to belong to Zn but to Rn.

Proposition 2.7.8. Let T be a subalgebra of S and let {fλ}λ∈Λ be a family

of elements of T such that the monoid I (T ) is generated by {I (fλ)}λ∈Λ.

If I (T ) is well ordered under � then T is generated by {fλ}λ∈Λ, that is,

T = K[fλ : λ ∈ Λ].

Proof. Let 0 6= τ1 ∈ T . Our goal is to write τ1 as a polynomial in {fλ}λ∈Λ.

Start by writing

I (τ1) = d1 I (fλ1
) + . . . + dr I (fλr

); di ∈ N

Let k ∈ K be such that the leading term of kτ1 equals the leading term of
∏r

i=1(fλi
)di and put τ2 = kτ1 −

∏r
i=1(fλi

)di ∈ T . Then either τ2 = 0, in which

case we are done, or I (τ1) � I (τ2). In the later case, we replace τ1 by τ2 and

proceed inductively to construct a decreasing sequence I (τ1) � I (τ2) � . . .

with τi ∈ T . Since I (T ) is well ordered the above sequence terminates and

hence the process must stop, proving our claim.

The above proof yields an algorithm for writing an element of T in terms of

{fλ}λ∈Λ, called subduction algorithm. It is analogous to expressing an element

of an ideal in terms of Gröbner bases. For this reason, the set {fλ : λ ∈ Λ} is

called a “SAGBI” bases of T . The term SAGBI stands for “Subalgebra Ana-

logue to Gröbner Bases for Ideals”. Both terms, SAGBI bases and subduction

algorithm were introduced by Robbiano and Sweedler in [RS90]. If Λ is finite,

i.e., I (T ) is finitely generated, then we say that T has a finite SAGBI basis.

We finish this chapter by determining the monoid I (R) for multiplicative

invariant algebras R = K[A]G. Recall the definition of A� from Definition 2.7.3.

This following Lemma is identical with [Re03, Lemma 2.6(a)].

Lemma 2.7.9. Let K[A]G denote the algebra of G-invariants of K[A]. Then

I (K[A]G) = A� .
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Proof. Let a ∈ I (K[A]G); so a = I (f) for some 0 6= f ∈ K[A]G. Then

a ∈ Supp(f) and hence g · a ∈ Supp(f) for each g ∈ G. But since a = I (f)

we have a � g · a for all g ∈ G. Therefore a ∈ A�. Conversely let a ∈ A� then

the orbit sum ϑ(a) is a nonzero element of K[A]G and I (ϑ(a)) = a. Hence

a ∈ I (K[A]G). This proves the Lemma.
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CHAPTER 3

REFLECTION GROUPS

In this chapter, we focus on multiplicative actions of reflection groups. The

basic definitions and concepts pertaining to reflections and reflection groups

are recalled in §3.2. In §3.3, we will show that any finite group G ≤ GLn(R)

must be a reflection group if its natural action on Rn has a fundamental domain

that is a polyhedral cone. In particular, if G ≤ GLn(Z) and the cone X� in

Definition 2.7.3 is polyhedral then G is a reflection group. The converse also

holds and is proved in §3.4: for any finite reflection group G ≤ GLn(Z), the

cone X� is polyhedral. Finally, in §3.5, we consider finite reflection groups

G ≤ GLn(Z) that act effectively on Zn, that is, (Zn)G = {0}. We show that,

in this case, the cone X� is actually simplicial. We will also prove a number

of technicalities on reflections for later use.

Except for the result on simplicial cones, the main results in this chapter

are all due to Reichstein [Re03].

3.1 Basic Concepts

Definition 3.1.1. A automorphism φ of a finite dimensional vector space V

is called a pseudo-reflection if IdV −φ has rank 1, that is, {v−φ(v) : v ∈ V } is
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a 1-dimensional subspace of V . If further φ2 = IdV , we call φ a reflection. A

group of automorphisms if V is said to be a reflection group if it is generated

by reflections.

Geometrically, a reflection is an invertible linear transformation leaving

some hyperplane pointwise fixed and sending any vector orthogonal to that

hyperplane to its negative. In general, there are pseudo-reflections that are

not reflections. For example,
( √

−1 0

0 1

)

∈ GL2(C) is a pseudo-reflection but

not a reflection. In our study, we consider finite groups G ≤ GLn(Z) acting

on the lattice A ∼= Zn. But trivially this action is extendable to an action

on the vector spaces Qn or Rn. Therefore we say g ∈ GLn(Z) is a reflection

or pseudo-reflection on the lattice A depending on whether it is reflection or

pseudo-reflection on Rn or, equivalently, on Qn. The following Proposition

shows that reflections and pseudo-reflections in G are the same.

Proposition 3.1.2. Pseudo-reflections of finite order on Rn are reflections.

Proof. Let σ be a pseudo-reflection on V = Rn and put G =< σ >gp. Then G

acts on V and the hyperplane

Hσ = ker(σ − IdV )

is stable under the G-action. Since R has characteristic zero, we can apply

Maschke’s theorem: there exists a complement V ′′ of V ′ stable under G. But

V ′′ is 1-dimensional; so V ′′ = Rv for some v ∈ V with σ(v) = λv (λ ∈ R).

Hence the matrix of σ corresponding to a basis of V that consists of a basis of

V ′ together with v is given by





1 0 . . . 0

0 1 . . . 0

.

.

.

.

.

.

.
.
.

.

.

.

0 0 . . . λ





But since σ is of finite order, λ must be of finite order. as well, and since σ is

not identity then the only possibility for λ is −1. Thus, σ2 = IdV and so σ is

a reflection.
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Example 3.1.3. As in Example 2.6.2, let the symmetric group Sn act on Zn

by s(ei) = es(i) (s ∈ Sn), where {ei}
n
1 is the standard basis of Zn. The group

Sn is generated by the transpositions (i, i + 1) for 1 ≤ i ≤ n − 1, and the

matrix of each (i, i + 1) for the standard basis has the form
(

1i−1×i−1

0 1

1 0

1n−i−1×n−i−1

)

Hence, all generators (i, i + 1) acts as reflections and Sn acts as a reflection

group on Zn.

Our discussion of reflections in subsequent sections will make use of certain

bilinear forms on Rn. Therefore, we recall the basic notions. Throughout, we

assume that G is a finite subgroup of GLn(R).

Definition 3.1.4. A bilinear form < , >: Rn × Rn → R is called

• symmetric if < v, w >=< w, v > for all v, w ∈ Rn;

• positive definite if < v, v > > 0 holds for all (0, . . . , 0) 6= v ∈ Rn;

• G-invariant if < g(v), g(w) >=< v, w > holds for all g ∈ G, v, w ∈ Rn.

There always exists a symmetric, positive definite, G-invariant bilinear form

< , > on Rn; it can be constructed by averaging the standard inner product ·

of Rn over the group G:

< x, y >:=
∑

g∈G

g(x) · g(y) (3.1)

From now on, < , > will denote the bilinear form (3.1). Note that < , > can

be used to identify the dual of of Rn with Rn, by matching v ∈ Rn with the

linear form < v, . > on Rn.

3.2 Reflection Groups from Polyhedral Cones

In this section, we let G ≤ GLn(R) be a finite group. We assume that

there is a fundamental domain, X, for the natural action of G on Rn which
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is a polyhedral cone. In particular, by Lemma 2.7.2, we have dim X = n.

Let F1, . . . , Fm denote the facets of X and write Fi = X ∩ v⊥
i for suitable

vi ∈ X∨. We identify the dual (Rn)∗ with Rn by means of a fixed a symmetric,

G-invariant, positive definite bilinear form < , > on Rn, as in equation (3.1).

So X∨ ⊆ Rn. Now define a reflection, σi, to be the orthogonal transformation

of Rn sending vi 7→ −vi and fixing the hyperplane Hi := v⊥
i orthogonal to

vi. Note also that Fi ⊆ Hi, and so Hi is the space generated by Fi, since

dim(Fi) = n − 1.

The following Theorem is identical with [Re03, Proposition 4.1].

Theorem 3.2.1 (Reichstein [Re03]). Let G ≤ GLn(R) be a finite group

such that there is a fundamental domain, X, for the natural G-action on Rn

which is a polyhedral cone. Then G is a reflection group. Specifically, using

the above notations, the reflections σ1, . . . , σm generate G.

Proof. We begin by proving the following claim which holds for any funda-

mental domain for the action of G:

Claim 1 : The boundary ∂X of X is contained in Y :=
⋃

g(X)6=X g(X).

Suppose to the contrary that there is an x ∈ ∂X \ Y . Since X is closed, by

Lemma 2.5.2(ii), each set g(X) is also closed, and hence so is Y . Therefore,

there exists a neighborhood B of x such that B ∩ Y = ∅. On the other hand,

since x ∈ ∂X, there exists b ∈ B \ X. Hence b /∈ Y ∪ X. But this is a

contradiction since X is a fundamental domain for the G-action on Rn, and

hence Y ∪ X = Rn. This proves Claim 1.

Next, using the notations introduced above, we prove

Claim 2 : The reflections σ1, . . . , σm all belong to G.

To prove this, pick a point p in some facet Fi of X; so p ∈ ∂X. By Claim

1, there exists some 1 6= g ∈ G such that p ∈ g(X). Therefore, p ∈ X

and g−1(p) ∈ X. But as X is a fundamental domain, this is possible only if
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g−1(p) = p. Since p ∈ Fi was arbitrarily chosen we have proved that

Fi ⊆
⋃

16=g∈G

ker(g − 1) .

By Lemma 2.5.4(ii), it follows that Hi ⊆ ker(gi−1) for some 1 6= gi ∈ G. Thus,

gi is a non-identity orthogonal transformation of Rn that fixes Hi point-wise.

Consequently, gi maps H⊥
i = Rvi to itself. Since gi has finite order 6= 1, the

only possibility for gi(vi) is −vi. Therefore gi = σi, whence σi ∈ G. Thus,

Claim 2 is proved.

Now let G0 be the subgroup of G generated by {σ1, . . . , σm}. Since X is a

fundamental domain for the G-action on Rn, Lemma 2.5.4(i) implies that

X * ∪16=g∈G ker(g − 1) .

Hence, there exists a point p ∈ X such that g(p) 6= p for all 1 6= g ∈ G. In

particular, p /∈ g0(Hi) for any g0 ∈ G0 and i = 1, . . . , m. Indeed, if p = g0(hi)

for some hi ∈ Hi then g0σig
−1
0 (p) = p which is a contradiction since g0σig

−1
0 is

not the identity. Now consider the closed chamber

C =
⋂

g0,i

g0(Hi)
+ ,

where g0 runs over all elements of G0, i ∈ {1, . . . , m}, and g0(Hi)+ denotes

the closed half space bounded by g0(Hi) which contains the point p. We have

C ⊆ X, since X =
⋂m

i=1 H
+
i . By [Bo68, Theorem V.3.3.2], C is a fundamental

domain for the action of G0 on Rn. Hence, for any g ∈ G, there exists g0 ∈ G0

and c ∈ C such that g(p) = g0(c). Thus, g−1
0 g(p) = c ∈ X and p ∈ X.

This forces g−1
0 g(p) = p and so g = g0 ∈ G0. Since this statement is true for

arbitrary g ∈ G , it follows that G = G0. This completes the proof of the

Theorem.

Recall the definition of the cone X� from Definition 2.7.3.

Corollary 3.2.2. Let G ≤ GLn(Z) be finite and assume that the cone X� is

polyhedral. Then G is a reflection group.
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Proof. By Lemma 2.7.5(iii), our hypothesis on X� implies that X� is a fun-

damental domain for the G-action on Rn.

In this section, let G ≤ GLn(Z) be a finite group. Our goal is to prove

the converse to Corollary 3.2.2: if G is a reflection group then the cone X� is

polyhedral.

Let σ ∈ G be a reflection. Then kerZn(σ + Id) = {a ∈ Zn : σ(a) = −a} is

of rank 1, and so it has two possible generators which differ by a ±-sign. We

let eσ denote the generator of kerZn(σ + Id) satisfying eσ � (0, . . . , 0). Thus,

σ(eσ) = −eσ . (3.2)

The linear form on Rn that is associated with eσ will be denoted by lσ; so

lσ : Rn → R , lσ(v) =< v, eσ > . (3.3)

Note that lσ is Z-valued on Zn, since the bilinear form < , > in (3.1) is Z-valued

on Zn × Zn. As in the proof of Proposition 3.1.2, we let

Hσ = ker(σ − IdV )

denote the hyperplane of Rn that is fixed by σ. The following (standard)

Lemma further explains the connections between σ, lσ and Hσ

Lemma 3.2.3. (i) Hσ = ker(lσ) = {v ∈ Rn :< v, eσ >= 0};

(ii) For all v ∈ Rn, σ(v) = v − 2 lσ(v)
<eσ,eσ>

eσ.

Proof. (i). The second equality in (i) is obvious. To prove the first equality,

let v ∈ Hσ. Then

lσ(v) =< v, eσ >=< σ(v), σ(eσ) >=< v,−eσ >= − < v, eσ > .

Therefore, lσ(v) =< v, eσ >= 0 and so Hi ⊆ ker(lσ). But dimHσ = n−1 and,

since lσ is a nonzero linear form, dim(ker(lσ)) = n − 1. Therefore, me must

have Hσ = ker(lσ).

(ii). Both sides of the asserted formula are linear transformations of Rn =

Hσ ⊕ Reσ, and both are the identity on Hσ (use part (i) for the right hand

side) and send eσ to −eσ. Thus, the two transformations are the same.
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Recall the definition of X� from Definition 2.7.3. The following result is

an elaboration of [Re03, Proposition 3.1].

Proposition 3.2.4 (Reichstein [Re03]). Let G ≤ GLn(Z) be a finite reflec-

tion group. Then

X� = {v ∈ Rn : v � g(v) for all g ∈ G}

= {v ∈ Rn : v � σ(v) for all reflections σ ∈ G}

= {v ∈ Rn : lσ(v) ≥ 0 for all reflections σ ∈ G} .

Proof. Clearly X� = {v ∈ Rn : v � g(v) for all g ∈ G} is the definition of

X� and equality of {v ∈ Rn : v � σ(v) for all reflections σ ∈ G} = {v ∈ Rn :

lσ(v) ≥ 0 for all reflections σ ∈ G} follows from Lemma 3.2.3(ii) that v � σ(v)

is equivalent to lσ(v) ≥ 0 for all reflections σ ∈ G.

Moreover the inclusion {v ∈ Rn : v � g(v) for all g ∈ G} ⊆ {v ∈ Rn : v �

σ(v) for all reflectionsσ ∈ G} is trivial. So it only remains to verify the reverse

inclusion of above. For this put

H+
σ = {v ∈ Rn : lσ(v) ≥ 0} and C =

⋂

σ

H+
σ ,

where σ runs over the reflections in G. Thus, C is a cone in Rn which is integral

polyhedral, because the lσ are finitely many linear forms that are Z-valued on

Zn; see [Ew96, Theorem V.2.10(a)]. By Lemma 2.7.5(i) X� is a fundamental

domain for the G action on Rn hence dim(X�) = n. Now applying Lemma

2.5.4 it follows that X� is not contained in a finite union of hyperplanes of

Rn. Since X� ⊆ C, neither is C. Thus,

C0 =
⋂

σ

{v ∈ Rn : lσ(v) > 0} (3.4)

is nonempty and is a chamber for the collection of hyperplanes Hσ of Rn;

see [Bo68, V.3.1]. Consequently, C = C0 (see [Bo68, V.1.3 formula (6)]))

and C is a fundamental domain for the G-action on Rn, by [Bo68, V.3.3,

Theorem 2]. But since X� is also a fundamental domain for the G-action on
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Rn, (Lemma 2.7.5), we have the following inclusion of fundamental domains,

X� ⊆ C =
⋂

σ H
+
σ . Hence they must be equal.

Corollary 3.2.5. If G is a finite reflection group then X� = Pos(A�).

Proof. From the above Theorem we know that X� = C, but since C is an

integral polyhedral cone we have, C = Pos(x1, . . . , xs) for some xi ∈ Zn, i =

1, . . . s. Now since xi are clearly in A� then C = Pos({x1, . . . , xs}) ⊆ Pos(A�).

But since Pos(A�) ⊆ X� we have the equality as desired.

To summarize, we combine Theorem 3.2.4, Corollary 3.2.2 and Lemma

2.7.5(iii) into the following theorem.

Theorem 3.2.6 (Reichstein [Re03]). Let G ≤ GLn(Z) be a finite group.

Then the following are equivalent:

(i) G is a reflection group;

(ii) the monoid A� = {a ∈ Zn : a � g · a ∀g ∈ G} is finitely generated;

(iii) the cone X� = Pos(A�) is polyhedral.

We continue to assume that G ≤ GLn(Z) is a finite reflection group. We

will now focus on the case where G acts effectively on Zn, i.e., (Zn)G = 0. Our

goal will be to show that, in this case, the cone X� is actually a simplicial

cone in the sense of the following definition.

Definition 3.2.7. A polyhedral cone C ⊆ Rn is called simplicial if it can be

generated by linearly independent vectors in Rn.

Lemma 3.2.8. Let C = Pos{v1, . . . , vm} be a simplicial cone in Rn, where

v1, . . . , vm are linearly independent. Then C has exactly m facets and m edges.

In fact, the rays R+vi, i = 1, . . . , m are precisely the edges of C, and they also

are the intersections of all different collections of m − 1 facets.

If C is also an integral cone then we may choose all vi ∈ Zn.
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Proof. Working inside the vector space that is generated by C, we may assume

that m = n. Thus, by hypothesis, {vi}
n
i=1 is a basis of Rn. Let {fi}

n
i=1 ∈ (Rn)∗

be the dual basis; so < fi, vj >= δij). Then the dual cone C∨ = {f ∈ (Rn)∗ :<

f, c > ≥ 0 ∀c ∈ C} is given by C∨ =
∑n

1 R+fi. Indeed, any f ∈ (Rn)∗ can be

written as f =
∑n

i=1 rifi with ri ∈ R, and f ∈ C∨ if and only ri =< f, vi >≥ 0

for all i.

Recall that, by definition, the faces F of C are the subsets of the form

F = C ∩ f⊥ for some f ∈ C∨. Writing f =
∑

rifi, as above, one obtains that

C ∩ f⊥ =
∑

i:ri=0 R+vi. Therefore, the faces of C are determined as follows

FI =
∑

i∈I

R+vi : I ⊆ {1, 2, . . . , n} ,

and dim(FI) = |I|, the cardinality of I.

Hence the edges of C are exactly the rays Ei = R+vi and the facets are

Fi :=
∑

j 6=i R+vj. One can easily see that each edge is the intersection n − 1

of the facets.

Finally, if C is integral then so are all its faces; see [Oda, Proposition

1.3]. In particular, the edges R+vi are integral; so we may take vi ∈ Zn. This

completes the proof of the lemma.

We now turn to finite reflection groups G ≤ GLn(Z). Our first goal is to

give some equivalent conditions for G to act effectively on Zn. To this end,

recall from Proposition 3.2.4 that

X� = {v ∈ Rn : v � σ(v) for all reflections σ ∈ G} =
⋂

σ

H+
σ ,

where σ runs over the reflections in G, H+
σ = {v ∈ Rn : lσ(v) ≥ 0} is as in

the proof of Proposition 3.2.4, and lσ ∈ (Rn)∗ is the linear form of (3.3). Let

σi (i = 1, . . . , t) be a minimal collection of reflections in G so that

X� =
t
⋂

i=1

H+
i , (3.5)

where we have put

H+
i = H+

σi
= {v ∈ Rn : lσi

(v) ≥ 0} .
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For simplicity, we will also write li for the linear form lσi
, and ei for the element

eσi
∈ Zn in (3.2); so li =< . , ei >. By Lemma 3.2.3, we have

Hi := ker(li) = {v ∈ Rn :< v, ei >= 0} . (3.6)

Lemma 3.2.9. With the above notations, we have:

(i) < ei, ej > ≤ 0 for distinct i, j ∈ {1, ..., t}.

(ii) The vectors e1, . . . , et are linearly independent over R.

Proof. For (i), see [Re03, Lemma 5.1] (which in turn relies on [Bo68, Propo-

sition V.3.4.3(iii)]).

For (ii), suppose that
∑t

i=1 riei = 0 for suitable ri ∈ R. After possibly

rearranging and collecting the positive and negative scalars ri separately we

may write
∑

rαeα =
∑

rβeβ =: a

where rα, rβ ∈ R+ and the eα, eβ are distinct. By part (i),

< a, a > =
∑

α,β

rαrβ < eα, eβ >≤ 0

and hence a = 0, since < , > is positive definite. Now choose v0 ∈ C0, where

C0 is as in (3.4). Then < eα, v0 >> 0 but

0 = < a, v0 > = <
∑

rαeα, v0 > =
∑

rα < eα, v0 > .

It follows that rα = 0 for all α. Similarly can show rβ = 0. Therefore, ri = 0

for all i = 1, . . . , t and hence the ei are linearly independent.

The following lemma gives the promised equivalent conditions for effective-

ness of the G-action.

Lemma 3.2.10. The following are equivalent:

(i) (Zn)G = 0.

(ii) {e1, . . . , et} span Rn
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(iii) X� contains no nonzero linear subspace.

Proof. (i) ⇔ (ii) : Note that

v ∈ (Zn)G ⇔ −v ∈ (Zn)G ⇔ v � g(v) and − v � g(−v), ∀g ∈ G

⇔ v,−v ∈ A� ⇔ li(v) ≥ 0 and li(−v) ≥ 0, ∀i = 1, . . . t,

⇔ li(v) = 0, ∀i = 1, . . . t ⇔ v ∈ {e1, . . . , et}
⊥ ,

where the second equivalence follows from equation (3.5) and the fact that

A� ⊆ X�. Hence, (Zn)G = 0 ⇔ {e1, . . . , et}
⊥ = 0 ⇔ {e1, . . . , et} span Rn

(i) ⇔ (iii) : This is implicitly shown in the equivalence (i) ⇔ (ii) above.

Note also that (Rn)G = R ⊗Z (Zn)G.

It is now a simple matter to prove the main result of this section.

Theorem 3.2.11. Let G ≤ GLn(Z) be a finite reflection group that acts effec-

tively on Zn. Then the cone Pos(A�) = X� (see Theorem 3.2.6) is a simplicial

cone of dimension n.

Proof. From Lemma 3.2.10 we know that the vectors e1, . . . , et generate Rn

and, by Lemma 3.2.9, they are linearly independent. Hence, t = n and

e1, . . . , et is a basis of Rn. Identifying the dual (Rn)∗ with Rn by means of

the bilinear form < , >, as usual, let wi, . . . , wn be the dual basis of Rn; so

< wi, ej >= δi,j.

Recall from equation (3.5) that

X� = ∩t
i=1H

+
i .

Thus, all wi belong to X�, and hence Pos(w1, . . . , wt) ⊆ X�. Conversely, let

x ∈ X� and write x =
∑

riwi with ri ∈ R. Then, for all j,

0 ≤< x, ej >=<
∑

i

riwi, ej >=
∑

i

ri < wi, ej >= rj

This shows that x ∈ Pos(w1, . . . , wt). Therefore, X� = Pos(w1, . . . , wt) is a

simplicial cone of dimension n.
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Remark 3.2.12. The converse of Theorem 3.2.11 also holds: if G ≤ GLn(Z) is

any finite group such that the cone Pos(A�) is simplicial then G is a reflection

group which acts effectively on Zn. Indeed, simplicial cones are polyhedral and

contain no nonzero linear subspaces. Thus, Theorem 3.2.6 implies that G is a

reflection group and Lemma 3.2.10 yields that G acts effectively.

We finish this section by noting the following group theoretical consequence

of Theorem 3.2.11 (which is known and can also be proved by using root

systems).

Corollary 3.2.13. If G ≤ GLn(Z) is a finite reflection group that acts effec-

tively on Zn then G can be generated by at most n reflections.

Proof. By Theorem 3.2.11, the fundamental domain X� for the G-action on

Rn (see Theorem 3.2.6) is a simplicial cone of dimension n. Thus, by Lemma

3.2.8, X� has exactly n facets. Finally, Theorem 3.2.1 yields that the wall

reflections across the facets generate G.
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CHAPTER 4

THE THEOREM OF LORENZ

USING SAGBI BASES

4.1 Overview

Throughout this chapter, we assume G ≤ GLn(Z) to be a finite group.

Furthermore, as in previous chapters, S := K[x±1
1 , . . . , x±1

n ] ∼= K[A] will be the

group algebra, with the multiplicative action of G, and R := K[A]G will denote

the multiplicative invariant algebra.

In this chapter, we prove the main results of this thesis. In particular, we

will prove Theorem 1.5.1 that was stated in the Introduction. In doing so, we

will give a new proof of the following result which is one of the variants of the

Shephard-Todd-Chevalley Theorem in multiplicative invariant theory.

Theorem 4.1.1 (Lorenz [Lo01]). If G ≤ GLn(Z) is a finite reflection group

acting effectively on the lattice Zn, then the multiplicative invariant algebra

R = K[A]G is a semigroup algebra.

Theorem 4.1.1 actually holds for any finite reflection group, even if the

action on Zn is not effective; see [Lo01]. Moreover, the structure of the monoid
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M so that R ∼= K[M] is known; [Lo01] gives a description in terms of the weight

lattice of a suitable root system.

Our approach is different from the one taken in [Lo01]. Using SAGBI

bases, simplicial cones, and results developed in the previous chapters we will

prove the following result. As before, we assume that an arbitrary term order-

ing � of Rn has been chosen.

Theorem 4.1.2. Let G ≤ GLn(Z) be a finite group such that the cone Pos(A�)

is simplicial. Then the multiplicative invariant algebra R = K[A]G is a semi-

group algebra K[M] such that the initial map gives an isomorphism I : M ∼=

A�.

Recall that, by Theorem 3.2.11 and Remark 3.2.12, our hypothesis on

Pos(A�) above is equivalent to G ≤ GLn(Z) being a finite reflection group that

acts effectively on Zn. Therefore, Theorem 4.1.2 implies Theorem 4.1.1. Note

also that the implication (i) ⇒ (ii) of Theorem 1.5.1, stated in the Introduction,

is covered by Theorem 4.1.2. The reverse implication, (ii) ⇒ (i), is a rather

straightforward consequence of Theorem 3.2.6; see Proposition 4.3.1 below.

Finally, in §4.4 we will apply the techniques used in the proof of Theorem

4.1.2 to calculate the invariant algebra R for a particular example.

4.2 Proof of Theorem 4.1.2

We assume that the cone X� = Pos(A�) is simplicial. As was pointed out

above, this forces G to be a finite reflection group that acts effectively on Zn.

In particular, by Proposition 3.2.4, we know that

X� = {v ∈ Rn : v � g(v) for all g ∈ G} (4.1)

and X� is a fundamental domain for the action of G on Rn. The latter implies

that dim X� = n; see Lemma 2.7.2. Thus, since X� is a simplicial cone, we

may write X� = Pos(v1, . . . , vn), where the vi form a basis of Rn. By Lemma

3.2.8, we may choose vi ∈ Zn and so vi ∈ Zn ∩ X� = A�.
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Lemma 4.2.1. Suppose X� is a simplicial cone, say X� = Pos(v1, . . . , vn)

with linearly independent vi ∈ A�, as above. There exist pi ∈ N such that the

lattice

L := Z
1

p1
v1 + . . . + Z

1

pn
vn ⊆ Rn

has the following properties:

(i) Zn ⊆ L and A� = Zn ∩ L+, where L+ := Z+
1
p1

v1 + . . . + Z+
1
pn

vn;

(ii) L is G-stable and G acts trivially on L/Zn.

Moreover A� = Zn ∩L+, where L+ := Z+
1
p1

v1 + . . .+Z+
1
pn

vn and A� is a well

ordered set with respect to �.

Proof. By Lemma 3.2.8, the facets of X� are given by

Fi :=
∑

j 6=i

R+vj (i = 1, . . . , n) .

Let λi ∈ F⊥
i ∩Zn be a generator of the 1-dimensional lattice F⊥

i ∩Zn. Observe

that < λi, vi >6= 0, for otherwise λi ∈ {v1, . . . vn}
⊥ = 0, a contradiction.

Replacing λi by −λi if necessary we may assume that < λi, vi >> 0. The

linear transformations

σi : Rn −→ Rn : v 7→ v −
2 < v, λi >

< λi, λi >
λi

are reflections across the hyperplane RFi. In fact, by Theorem 3.2.1, the σi

belong to G and generate G. Hence, σi(Zn) ⊆ Zn. It follows that 2 <a,λi>
<λi,λi>

λi =

a − σi(a) ∈ Zn for all a ∈ Zn. Therefore, 2 <a,λi>
<λi,λi>

λi ∈ Zn ∩ F⊥
i = Zλi, and

hence

2
< a, λi >

< λi, λi >
∈ Z for all a ∈ Zn. (4.2)

In particular, since < vi, λi >> 0 it follows that

pi := 2
< vi, λi >

< λi, λi >
∈ N . (4.3)

We claim that the numbers pi satisfy properties (i) and (ii) of the lemma. For

simplicity put

v′
i :=

vi

pi
;
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so X� = Pos(v′
1, . . . , v

′
n).

For (i), let a ∈ Zn and write a =
∑

i riv
′
i for suitable ri ∈ R. Then, by

(4.2),

2
< a, λj >

< λj, λj >
= 2

<
∑n

i=1 riv
′
i, λj >

< λj, λj >
= 2

rj

pj

< vj, λj >

< λj, λj >
= rj ∈ Z .

This proves the inclusion Zn ⊆ L, and hence (i) is proved.

Property (ii) says that

g(v′
i) − v′

i ∈ Zn

holds for all g ∈ G and i = 1, . . . , n. Since σ1, . . . , σn are generators of G, by

Theorem 3.2.1, it suffices to show this for g = σj j ∈ {1, . . . , n}. But

σj(v
′
i) − v′

i = v′
i − 2

< v′
i, λj >

< λj, λj >
λj − v′

i = −2
< v′

i, λj >

< λj, λj >
λj

= −
1

pi
2

< vi, λj >

< λj, λj >
λj = −δijλj ∈ Zn ,

where δij is the Kronecker delta. This proves (ii).

Now consider A�. Note that L+ = L∩X�. Thus, by (i), A� = Zn ∩X� ⊆

L∩X� = L+ and hence A� ⊆ Zn∩L+. On the other hand, putting p =
∏n

1 pi,

we have pL+ ⊆ A� because vi ∈ A�. Since A� is a saturated submonoid of Zn,

by Lemma 2.7.5(i), we conclude that A� = Zn ∩ L+, as asserted. Finally, by

Lemma 3.2.10(ii) the set {λ1, . . . , λn} spans the whole Rn. Hence, by [Re03,

Prop 5.5], A� ∩ Rλ1 + . . . + Rλn = A� is well ordered.

We are now ready to give the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. Write X� = Pos(v1, . . . , vn) with linearly indepen-

dent vi ∈ A� and put v′
i = vi

pi
and L+ = Z+v′

1 + . . . + Z+v′
n with pi ∈ N, as in

Lemma 4.2.1. Consider an element w ∈ A� = Zn ∩ L+; so

w =
n
∑

i=1

ziv
′
i (4.4)

with uniquely determined zi = zi(w) ∈ Z+. As in §2.7.2, we view the group

algebra S = K[A] as being contained in the larger group algebra SR = K[AR],
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where AR = {xv : v ∈ Rn}. In SR, form the invariant

fw :=

n
∏

i=1

ϑ(xv′i)zi. (4.5)

We claim that fw actually belongs to S, and hence to R = SG. To show this,

recall that

ϑ(xv′i) =
∑

g∈G/Gv′
i

x
g·v′i ,

where Gv′i
denotes the stabilizer of v′

j in G. Expanding the product fw =
∏n

i=1 ϑ(xv′i)zi, we see that fw is a K-linear combination of terms of the form

xv with v =
∑n

i=1

∑zi

k=1 gi,k · v′
i for suitable g1,1, . . . , gn,zn

∈ G. By Lemma

4.2.1(ii),

v − w =

n
∑

i=1

zi
∑

k=1

(gi,k · v
′
i − v′

i) ∈ Zn .

Since w ∈ Zn, it follows that v ∈ Zn. Hence, all v in the support of fw belong

to Zn and so fw ∈ S, as we have claimed. Moreover, by (4.1) and Remark

2.7.7, the initial term of fw is given by

I (fw) =
n
∑

i=1

zi I (ϑ(xv′i)) =
n
∑

i=1

ziv
′
i = w . (4.6)

Observe that fw+w′ = fwfw′ holds for w, w′ ∈ A�. Thus, the collection

M := {fw : w ∈ A�}

is a submonoid of (R, · ) and the map A�
� M, w 7→ fw, is a monoid iso-

morphism with inverse the initial map I . Formula (4.6) also implies that

the elements of M are linearly independent over K. Indeed, any finite lin-

ear combination f =
∑t

1 λjfwj
= 0 with 0 6= λj ∈ K and wj ∈ A� satisfies

I (f) = maxj{wj}.

To complete the proof of Theorem 4.1.2, it suffices to show that M generates

the K-algebra R. But, by Lemma 2.7.9, we have I (R) = A� = {I (f) : f ∈

M} and A� is well ordered, by Lemma 4.2.1. Therefore, Proposition 2.7.8

implies that R is indeed generated by M. This completes the proof.
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Remark 4.2.2. By Lemma 2.7.5(iii), the semigroup A� is finitely generated.

If w1, . . . , wr is any collection of generators for A� then the above proof shows

that the monoid M is generated by the elements fwi
, and these elements form

a finite SAGBI basis of the multiplicative invariant algebra R.

4.3 The Converse

In this section, we establish the other implication, (ii) ⇒ (i) of Theorem

1.5.1 stated in the Introduction. We do not assume that G acts effectively

here.

Proposition 4.3.1. Assume that the multiplicative invariant algebra R =

K[A]G is a semigroup algebra K[M] for some submonoid M of (R, · ) such that

the initial map I is injective on M. Then G acts as a reflection group on Zn.

Proof. By Noether’s Theorem 1.3.2, R is an affine K-algebra. Hence, by Propo-

sition 2.3.3, the monoid M is finitely generated, say M = 〈{f1, . . . , fs}〉mon.

We next show that I (R) = 〈{I (f1), . . . , I (fs)}〉mon. Here, the inclusion

⊇ is trivial. Conversely, let f ∈ R be given. Write f as a finite sum f =
∑

i kimi with ki ∈ K and distinct mi ∈ M. By hypothesis on I , all I (mi)

are distinct. Hence,

I (f) = max
i

{I (mi)} ∈ I (M) .

Since M = 〈{f1, . . . , fs}〉mon and I is a monoid map, we have I (M) =

〈{I (f1), . . . , I (fs)}〉mon. This proves the reverse inclusion, ⊆.

Finally, by Lemma 2.7.9, we have I (R) = A�; so we have shown that A�

is a finitely generated monoid. By Theorem 3.2.6, we conclude that G is a

reflection group.

4.4 Examples

Our first example describes the action of a reflection group on Z2. We will

determine the monoid A� for this example, using the lexicographical order
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on Z2, and explicitly carry out the construction of a monoid basis M for the

multiplicative invariant algebra R by following the main steps in the proof

of Theorem 4.1.2. This example will also illustrate that not just any finite

SAGBI basis will lead to a suitable monoid M ⊆ (R, · ) so that R = K[M].

Example 4.4.1. Recall from Example 3.1.3 that symmetric group Sn+1 act

on Zn+1 by s(ei) = es(i) (s ∈ Sn+1), where {ei}
n+1
1 is the standard basis of

Zn+1, and all transpositions act as reflections. The sublattice of Zn+1 that is

spanned by the elements ai = ei − ei+1 (i = 1, . . . , n) is easily seen to be stable

under Sn+1; so Sn+1 acts as a reflection group on this lattice, which is known

as the root lattice An. We will consider the case n = 2 in detail here.

Thus, G = S3 acts on A2 = Za1⊕Za2
∼= Z2. For example, the transposition

(1, 2) ∈ G sends a1 7→ −a1 and a2 7→ a1 + a2; so (1, 2) acts via the matrix

t =
(

−1 1

0 1

)

. Similarly, the 3-cycle (1, 2, 3) ∈ G acts via the matrix u =
(

0 −1

1 −1

)

. The complete list of all matrices for the elements of G is as follows:

I =
(

1 0

0 1

)

, r =
(

0 −1

−1 0

)

, s =
(

1 0

1 −1

)

,

t =
(

−1 1

0 1

)

, u =
(

0 −1

1 −1

)

, v =
(

−1 1

−1 0

)

Observe that r, s, and t are the reflections in G. We will identify A2 with Z2,

as above, and use the lexicographical order �=�lex on Z2; see §2.7.1.

We first determine A�. By Proposition 3.2.4, we have

A� = Z2 ∩ X� = {v ∈ Z2 : v � σ · v for σ = r, s, t}

For (a, b) ∈ Z2, we have

(a, b) � r · (a, b) = (−b,−a) ⇔ a ≥ −b

(a, b) � s · (a, b) = (a, a − b) ⇔ 2b ≥ a

(a, b) � t · (a, b) = (b − a, b) ⇔ 2a ≥ b

Intersecting the sets we get that:

A� = {(a, b) ∈ Z2 : 2a ≥ b ≥ a/2} .
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This submonoid of Z2 is generated by three points:

w1 = (2, 1), w2 = (1, 2), w3 = (1, 1)

In the Appendix, we give a Maple program that will solve the simultaneous

inequalities and give a quick graphical description of the set A�. See Figure

4.1 below, for the example under consideration.

Figure 4.1: A� for the reflection group in Example 4.4.1
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Visibly, A� is well ordered (as it should be, since G acts effectively on Z2;

see Lemma 4.2.1).

In the group algebra S = K[A], write x = x
(1,0) and y = x

(0,1). Then the

orbit sums of w1, w2, w3 are:

f1 = ϑ(xw1) = x2y + x−1y−2 + x−1y

f2 = ϑ(xw2) = xy2 + x−2y−1 + x1y−1

f3 = ϑ(xw3) = xy + x−1y−1 + x + y + x−1 + y−1

By Proposition 2.7.8, {f1, f2, f3} is a SAGBI basis of R = K[x±1, y±1]G. How-

ever, the submonoid of (R, · ) that is generated by {f1, f2, f3} does not form a

K-basis for R. Indeed, the fi satisfy the relation

f1f2 − f 3
3 + 3f1f3 + 3f2f3 + 6f1 + 6f2 + 9f3 + 9 = 0 .

On the other hand, we know that R is a semigroup algebra. Let us a semigroup

basis M of R for this example by tracking the proof of Theorem 4.1.2. We start

with the monoid A� = Z+(2, 1)+Z+(1, 1)+Z+(1, 2) that was determined above.

Thus, in the notation of Lemma 4.2.1, we have X� = Pos(A�) = Pos(v1, v2)

with v1 = w1 = (2, 1), v2 = w2 = (1, 2). Let p = p1,
1
q

= p2 be as in Lemma

4.2.1. These could be determined by formula (4.3), but this would require

calculating the bilinear form < , > in (3.1). Instead, we note that, by Lemma

4.2.1(ii), we must have

r(
1

p
v1) −

1

p
v1 = (

−1

p
,
−2

p
) − (

2

p
,
1

p
) = (

−3

p
,
−3

p
) ∈ Zn

r(
1

q
v2) −

1

q
v2 = (

−2

q
,
−1

q
) − (

1

q
,
2

q
) = (

−3

q
,
−3

q
) ∈ Zn

s(
1

p
v1) −

1

p
v1 = (

2

p
,
1

p
) − (

2

p
,
1

p
) = (0, 0) ∈ Zn

s(
1

q
v2) −

1

q
v2 = (

1

q
,
−1

q
) − (

1

q
,
2

q
) = (0,

−3

q
) ∈ Zn

Hence p = 1 or 3 and q = 1 or 3. But by Lemma 4.2.1(i), we must have

Z2 ⊆ L = Z1
p
v1 +Z1

q
v2 which is impossible if either p or q equals 1. Therefore,

p = q = 3 .
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Thus, putting v′
1 = 1

p
v1 and v′

2 = 1
q
v2 as in the proof of Theorem 4.1.2, we have

w1 = 3v′
1, w2 = 3v′

2 and w3 = v′
1 + v′

2 .

Therefore by formulas (4.4) and (4.5), we obtain the following generators for

the invariant algebra R:

f1 = fw1
= ϑ(v′

1)
3 = (x2/3y1/3 + x−1/3y−2/3 + x−1/3y1/3)3

= [
xy + y + 1

x1/3y2/3
]3 = x−1y−2(xy + y + 1)3

f2 = fw2
= ϑ(v′

2)
3 = (x1/3y2/3 + x−2/3y−1/3 + x1/3y−1/3)3

= [
(xy + x + 1)

x2/3y1/3
]3 = x−2y−1(xy + x + 1)3

f3 = fw3
= ϑ(v′

1)ϑ(v′
2) =

= (x2/3y1/3 + x−1/3y−2/3 + x−1/3y1/3)(x1/3y2/3 + x−2/3y−1/3 + x1/3y−1/3)

= x−1y−1(xy + y + 1)(xy + x + 1)

By the proof of Theorem 4.1.2, the monoid

M = 〈ϑ(v′
1)

3, ϑ(v′
2)

3, ϑ(v′
1)ϑ(v′

2)〉mon

is indeed a K-basis for the invariant algebra R; so R = K[M].

In the next example, the group G is not a reflection group. We will demon-

strate via the graph of A�(G) that it is not a finitely generated semigroup.

This will serve to illustrate the implication (ii) ⇒ (i) in Theorem 3.2.6. Again,

this example is in rank 2 and we use the lexicographic ordering on R2.

Example 4.4.2. Let G ≤ GL2(Z) by the cyclic group generated by the ma-

trix t =
(

0 −1

1 0

)

}. The transformation of R2 given by t is counterclockwise

rotation by the angle π/2; so G has order 4. The elements of G are:

I =
(

1 0

0 1

)

, r =
(

0 1

−1 0

)

, s =
(

−1 0

0 −1

)

, t =
(

0 −1

1 0

)



53

For (a, b) ∈ Z2, we have

(a, b) � r(a, b) = (b,−a) ⇔ a > b ∪ [a = b ∩ b ≥ 0]

(a, b) � s(a, b) = (−a,−b) ⇔ a > 0 ∪ [a = 0 ∩ b ≥ 0]

(a, b) � t(a, b) = (−b, a) ⇔ a > −b ∪ [a = −b ∩ b ≥ 0]

Combining all the inequalities we get that;

A� = {(a, b) ∈ Z2 : a ≥ 0 ∩ −a < b ≤ a} .

Observe that a generation by any finite collection of points in A� will exclude

points of A� on the boundary {(a, b) : −a + 1 = b} of A�, as the figure below

clearly demonstrates. Therefore A� can not be finitely generated.
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Figure 4.2: A� for the non-reflection group in Example 4.4.2
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APPENDIX A

MAPLE PROGRAM

Below we give a maple program that will calculate and graph A� on a

given interval

Greater:=proc()

local integer:m,k,l,p;

with(linalg):

VEC1:=args[1];

VEC2:=args[2]; tempo:=matadd(VEC1,VEC2,1,-1);

TRUTH:=false;

if tempo[1] > 0 then

TRUTH:=true;

elif tempo[1]=0 and tempo[2] > 0 then

TRUTH:=true;

# elif tempo[1]=0 and tempo[2]=0 and tempo[3] > 0 then

# TRUTH:=true

fi;

RETURN(TRUTH);

end;LEXICOG:=proc()

local



integer:j,m,k,l,n,p;

LISTT:=args[1]; p:=nops(LISTT);Tempo:=LISTT[1];# print(p,LISTT,Tempo);

# for m from 1 to p do

for j from 1 to p do

T− value:= Greater(Tempo,LISTT[j]);

if T−value = false then

Tempo:=LISTT[j];# print(Tempo);

fi;

od;

#od;

RETURN(Tempo);

end;



For particular example one need to add the following to the above program,

Example: To calculate A� for the group,

G6 = {I =
(

1 0

0 1

)

, r =
(

0 −1

−1 0

)

, s =
(

1 0

1 −1

)

, t =
(

−1 1

0 1

)

,

u =
(

0 −1

1 −1

)

, v =
(

−1 1

−1 0

)

}

> with(linalg): > MAT[1]:=linalg[matrix](2,2,[1,0,0,1]);

> MAT[2]:=linalg[matrix](2,2,[0,-1,-1,0]);

> MAT[3]:=linalg[matrix](2,2,[1,0,1,-1]);

> MAT[4]:=linalg[matrix](2,2,[-1,1,0,1]);

> MAT[5]:=linalg[matrix](2,2,[0,-1,1,-1]);

> MAT[6]:=linalg[matrix](2,2,[-1,1,-1,0]);

> SETT:=[];

> for a1 from -25 to 15 do

> for a2 from -25 to 15 do

> VEC:=linalg[vector](2,[a1,a2]);

> Temp− List:=[];

> for m from 1 to 6 do

> Temp− List:=[op(Temp−List), multiply(MAT[m],VEC)];

> od; # print(Temp−List);

> T−P :=LEXICOG(Temp−List);

T−T := [T−P [1], T−P [2]]; #print(T−P );

> SETT:=[op(SETT),T−T ];

> # print(SETT);

> od;

> od; #print(SETT);

> with(plots):

> points:=op(SETT):pointplot(points,color=red);
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