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ABSTRACT

On Monge-Ampère Type Equations Arising In Optimal Transportation

Problems

Truyen Van Nguyen

DOCTOR OF PHILOSOPHY

Temple University, May, 2005

Professor Cristian E. Gutiérrez, Chair

In this dissertation we study Monge-Ampère type equations arising in opti-

mal transportation problems. We introduce notions of weak solutions, and

prove the stability of solutions, the comparison principle and the analogous

maximum principle of Aleksandrov-Bakelman-Pucci. We also establish a quan-

titative estimate of Aleksandrov type for c-convex functions which generalizes

the well known estimate of Aleksandrov proved for convex functions. These

results are in turn used to give a positive answer for the solvability and unique-

ness of the Dirichlet problems for any continuous boundary condition and for

finite Borel measures provided the domains satisfy a so called c-strictly convex

condition which we have introduced.
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CHAPTER 1

Introduction

The problem of optimal transportation is to find an optimal map that

pushes masses from one location to another, where the optimality depends

upon the context of the problem. These types of problems appear in several

forms and in various areas of mathematics and its applications: economics,

probability theory, optimization, meteorology, and computer graphics. We

refer to [RR98] for a detailed and complete description of the probabilistic

approach of Kantorovitch to this problem and to the Preface to Volume I

of this work for a large number of examples of applications in econometrics,

probability, quality control, etc.

The mathematical formulation of the optimal transportation problem con-

sidered in this thesis originates with Gaspar Monge 1746–1818. Let f, g ∈
L1(Rn) be nonnegative compactly supported with

∫
Rn

f =

∫
Rn

g, and let

dµ = f dx, dν = g dx. The Borel measurable map φ : Rn → Rn is mea-

sure preserving with respect to µ and ν if µ(φ−1(E)) = ν(E) for each Borel set

E ⊂ Rn. Let S(µ, ν) denote the class of all these measure preserving maps,

and let c : Rn → R be a convex function1, the cost function. The problem is

minimizing the cost functional

C(s) =

∫
Rn

c(x− s(x)) dµ(x)2 (1.1)

1The convexity assumption is technical and to be able to use the tools of convex analysis.
2A more general cost function can be used: c = c(x, y), but for simplicity we
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among all s ∈ S(µ, ν), and the answer is given by the following theorem due

to Caffarelli, Gangbo and McCann, see [Caf96], [GM96] and also [Urb98].

Theorem 1.1 Let c : Rn → R be C1 and strictly convex, f, g and C as above.

Then

1. there exists t ∈ S(µ, ν) such that C(t) = infs∈S(µ,ν) C(s);

2. t is essentially unique, i.e., if the infimum is attained also at t̄, then

t(x) = t̄(x) for a.e. x in the supp(f);

3. t is essentially one to one, that is, there exists t∗ ∈ S(ν, µ) such that

t∗(t(x)) = x for a.e. x ∈ supp(f), and t(t∗(y)) = y for a.e. y ∈ supp(g);

4. there exists a c-convex function u such that t is given by the formula

t(x) = x− (Dc)−1(−Du(x)).

Monge’s original problem is the case c(x) = |x|, and the minimizer is not

unique, see [EG99, TW01] for recent results.

The objective in this thesis is to study the following fully nonlinear pde of

Monge-Ampère type arising in the problem of optimal transport:

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω, (1.2)

where Ω is a bounded open set, g ∈ L1
loc(Rn) is positive, f ∈ L1

loc(Ω) is

nonnegative, and c∗ is the Legendre-Fenchel transform of c, see (2.2). Solutions

to this equation are understood in a weak sense and in a way parallel to the

notion of weak solution to the Monge-Ampère equation this time with a notion

of subdifferential associated with the cost function c, see Definition 3.1. Note

that when the cost function is given by c(x) = 1
2
|x|2 then (1.2) is reduced to

the standard Monge-Ampère equation

g(Dv) detD2v(x) = f(x) in Ω, (1.3)

choose c = c(x− y).
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with v(x) = 1
2
|x|2 + u(x). A particular case of (1.3) is the Gaussian curvature

equation arising in differential geometry. A fundamental difference between

equation (1.2) and equation (1.3) is that the principle part of the latter has

affine invariant structure whereas that of the first one no longer shares this

nice property unless the cost function is quadratic. This fact presents serious

difficulties in extending the classical results to the present setting since the

analysis for the standard Monge-Ampère equation heavily relies on the affine

invariant structure of the equation. Our main results in this thesis are notions

of weak solutions, comparison and maximum principles for this equation, and

the solvability of the Dirichlet problem in this class of solutions. Also, we

establish a quantitative estimate of Aleksandrov type for c-convex functions.

The organization of the thesis is the following. In Chapter 2 we study the

notions of convexity and subdifferential associated with the cost function c

and define the notion of generalized Monge-Ampère measure associated with

(1.2). The notions of weak solutions to (1.2) are given in Chapter 3 where we

also prove a stability property, Corollary 3.1. Chapter 4 contains maximum

principles extending to the present setting the Aleksandrov-Bakelman-Pucci

estimate for the Monge-Ampère operator. Chapter 5 contains the proofs of

the comparison principles. Chapters 4 and 5 have independent interest and

are used later to solve the Dirichlet problem. In Chapter 6 we solve the

Dirichlet problem for a class of domains strictly convex with respect to the

cost function c, see Definition 6.2, first for the homogeneous case, Theorem

6.1, next for the case when the right hand side is a sum of deltas, Theorem 6.2,

and finally for general right hand sides, Theorem 6.3 and Corollary 6.1. We

also consider the second boundary value problems in Chapter 7 where we show

that Aleksandrov solution and Brenier solution for the problems are equivalent

when the target domain is c∗-convex. In Chapter 8 we establish a quantitative

estimate of Aleksandrov type for c-convex functions which generalizes the well

known estimate of Aleksandrov proved for convex functions. We end the thesis

by an appendix showing that the standard Perron’s method can be carried out

to prove Theorem 6.2 provided that we assume in addition a subsolution to
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the problem exists.
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CHAPTER 2

Generalized Monge-Ampère

Measures

Let c : Rn → R be a continuous function and Ω be an open set in Rn.

2.1 c-subdifferential and c-convexity

1

Definition 2.1 Let u : Ω → R∪{+∞}. The c-subdifferential ∂cu(x) at x ∈ Ω

is defined by

∂cu(x) = {p ∈ Rn : u(z) ≥ u(x)− c(z − p) + c(x− p), ∀z ∈ Ω}.

Also for E ⊂ Ω we define ∂cu(E) = ∪x∈E∂cu(x).

Remark 2.1 If c(x) = 1
2
|x|2, then it is clear that p ∈ ∂cu(x) if and only

if p ∈ ∂(u + c)(x), i.e., ∂cu(x) = ∂(u + c)(x) where ∂ denotes the standard

subdifferential.

Definition 2.2 A function u : Ω → R ∪ {+∞}, not identically +∞, is c-

convex in Ω if there is a set A ⊂ Rn × R such that

u(x) = sup
(y,λ)∈A

[−c(x− y)− λ] for all x ∈ Ω.

1Introduced in [Die88] and [EN74].
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Proposition 2.1 If c(x) = 1
2
|x|2, then u is c-convex if and only if u + 1

2
|x|2

is convex.

Proof: It follows immediately noticing that c(x− y) = 1
2
〈x− y, x− y〉. �

Remark 2.2 The definition of c-convexity is not stable by linear operations.

For example, from Proposition 2.1 it follows that the function u(x) = 1− 1
2
|x|2

is |x|2/2-convex, but 2u(x) = 2 − |x|2 is not |x|2/2-convex. However it can

be proved, see [Vil03], that if u is c-convex then tu is also c-convex for every

t ∈ [0, 1].

Remark 2.3 If u is a c-convex function in Ω, then there exists a function

φ : W → R such that

u(x) = sup
y∈W

[−c(x− y)− φ(y)] for all x ∈ Ω, (2.1)

where W is the projection of A into Rn, i.e., W = {y ∈ Rn : (y, λ) ∈
A for some λ ∈ R}. Indeed, for each y ∈ W define φ(y) = inf {λ : (y, λ) ∈ A}.
Then φ(y) > −∞, since otherwise there exists a sequence {λn}∞n=1 such that

(y, λn) ∈ A and λn ↓ −∞. But then we get −c(x − y) − λn ↑ +∞ for all

x ∈ Ω, and therefore u(x) = +∞ for all x ∈ Ω which contradicts the definition

of c-convex function. So we have φ : W → R.

Let us now prove (2.1). If x ∈ Ω, then by the definition of φ we have

−c(x− y)− φ(y) ≥ −c(x− y)− λ for all (y, λ) ∈ A,

or

sup
y′∈W

[−c(x− y′)− φ(y′)] ≥ −c(x− y)− λ for all (y, λ) ∈ A.

Hence,

sup
y∈W

[−c(x− y)− φ(y)] ≥ u(x).

Now let y ∈ W . Given ε > 0 we have

[−c(x− y)− φ(y)]− ε = −c(x− y)− [φ(y) + ε] < −c(x− y)− λy ≤ u(x),
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for some λy such that (y, λy) ∈ A. Hence −c(x − y) − φ(y) ≤ u(x) for each

y ∈ W and so

sup
y∈W

[−c(x− y)− φ(y)] ≤ u(x).

This completes the remark.

In the following we shall consider the following conditions for the cost function

c.

(H1) c : Rn → R is a C1 and strictly convex function.

(H2) c : Rn → R is a strictly convex function and lim|x|→+∞
c(x)

|x|
= +∞.

(H3) c : Rn → R is a convex function and lim|x|→+∞
c(x)

|x|
= +∞.

Notice that the function c(x) = (1 + |x|2)1/2 satisfies (H1) and does not

satisfy (H2).

Proposition 2.2 Suppose c satisfies (H3). If u : Ω → R ∪ {+∞} is lower

semicontinuous and convex, then u is c-convex.

Proof: Since every lower semicontinuous convex function is the supremum of

affine functions, it is enough to assume that u(z) = q·z+b. Since c is continuous

and lim|x|→+∞
c(x)

|x|
= +∞, it follows sliding −u in a parallel fashion that

−u+λ is a supporting hyperplane to c at some point for some λ. That is, there

exist xu ∈ Rn and λu ∈ R such that c(xu) = −u(xu)+λu and c(z) ≥ −u(z)+λu
for all z ∈ Rn. Given x ∈ Ω, let yx = x − xu and λx = −u(x) + u(xu) − λu.

We have u(x) = −c(x − yx) − λx and u(z) ≥ −c(z − yx) − λx for all z ∈ Ω

since u is affine. Setting A = {(yx, λx) : x ∈ Ω} we obtain the proposition. �

Remark 2.4 Suppose c satisfies (H3). If u is a c-convex function in Ω that

is bounded in a neighborhood of x0 ∈ Ω, then ∂cu(x0) 6= ∅. Indeed, without

loss of generality we can assume that the set A ⊂ Rn×R in the definition of u

is closed. Then arguing as in Claim 2 of the proof of Lemma 2.1 below, there

exists (y, λ) ∈ A such that u(x0) = −c(x0−y)−λ and so u(x) ≥ −c(x−y)−λ =

u(x0)− c(x− y) + c(x0 − y) for all x ∈ Ω. Therefore y ∈ ∂cu(x0).
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If c satisfies (H1), then we also notice that ∂c (−c(· − y)) = {y} from

Proposition 2.3(1).

Remark 2.5 Suppose c satisfies (H3). It follows from the convexity of c that

if u is c-convex and locally bounded in Ω, then u is locally Lipschitz in Ω.

Indeed, let K ⊂ Ω be compact and x1, x2 ∈ K. From Remark 2.4, we have

that ∂cu(xi) 6= ∅ for i = 1, 2. Let y1 ∈ ∂cu(x1). By Lemma 2.3, |y1| ≤ R, and

since c is locally Lipschitz we have

u(x2)− u(x1) ≥ −c(x2 − y1) + c(x1 − y1) ≥ −C(K,R) |x2 − x1|.

Proposition 2.3 Let u be a function defined on Ω, and suppose that x0 is a

point of differentiability of u, and ∂cu(x0) 6= ∅. Then we have

1. If (H1) holds, then

∂cu(x0) = {x0 − (Dc)−1(−Du(x0))}.

2. If (H2) holds, then

∂cu(x0) = {x0 −Dc∗(−Du(x0))},

where c∗ is the Legendre-Fenchel transform2 of c defined by

c∗(y) = sup
x∈Rn

[x · y − c(x)]. (2.2)

Proof: Suppose first that c satisfies (H1). Let p ∈ ∂cu(x0). Then u(x) +

c(x − p) ≥ u(x0) + c(x0 − p) for all x ∈ Ω with equality at x = x0. That is,

u(x)+ c(x−p) attains a minimum at x0 and therefore Dc(x0−p) = −Du(x0).

Since c is C1 and strictly convex, (Dc)−1 exists on the image of Dc and we

have p = x0 − (Dc)−1(−Du(x0)).

To prove (2) we need the following definition.

2See [RW98, Chapter 11].
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Definition 2.3 The function u : Ω → R∪{±∞} is subdifferentiable at x0 ∈ Ω

if u(x0) is finite and there exists z ∈ Rn such that

u(x0 + v) ≥ u(x0) + v · z + o(|v|)

as |v| → 0. Let us denote by Mu(x0) the set of z’s satisfying the property

above.

Suppose that (H2) holds, and let p ∈ ∂cu(x0) with x0 a point of differentiability

of u. Then

u(x0)− c(x0 + v − p) + c(x0 − p) ≤ u(x0 + v) ≤ u(x0) + v ·Du(x0) + o(|v|).

Hence c(x0 + v − p) ≥ c(x0 − p) + v · (−Du(x0)) + o(|v|) as |v| → 0, and so

−Du(x0) ∈ Mc(x0 − p). From [GM96, Corollary A.2] we get that x0 − p =

Dc∗(−Du(x0)) and the proposition follows. �

Note that if u is a c-convex function and u is differentiable at x0 ∈ Ω, then

from Remark 2.4 we get ∂cu(x0) 6= ∅.

Remark 2.6 Suppose c is strictly convex satisfying c and c∗ are C2(Rd)3 and

u : Ω → R has a second derivative D2u(x0) at x0. Then if ∂cu(x0) 6= ∅, we

have

I +D2c∗ (−Du(x0))D
2u(x0) is diagonalizable with nonnegative eigenvalues.

(2.3)

Indeed, let p ∈ ∂cu(x0), then u(x) + c(x− p) ≥ u(x0) + c(x0− p) for all x ∈ Ω.

Hence Du(x0) +Dc(x0 − p) = 0 and by Taylor’s theorem D2u(x0) +D2c(x0 −
p) ≥ 0. So from Proposition 2.3(2) we get

D2u(x0) +D2c (Dc∗ (−Du(x0))) ≥ 0. (2.4)

On the other hand, from [Roc97, Corollary 23.5.1 and Theorem 26.1] we have

that Dc∗ (Dc(x)) = x for every x ∈ Rn and Dc (Dc∗(y)) = y for every y in the

image of Dc. Differentiating these equations yields

D2c∗ (Dc(x)) D2c(x) = I, and D2c (Dc∗(y)) D2c∗(y) = I

3If c is C2(Rn) and D2c(x) is positive definite for all x, then c∗ ∈ C2(Rn), D2c∗(x) is
positive definite for all x, and (c∗)∗ = c, see [RW98, Example 11.9, p. 480].
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for every x in Rn and every y in the image of Dc. From this we derive that

for any y in the image of Dc we have D2c∗(y) is invertible with [D2c∗(y)]−1 =

D2c (Dc∗(y)), and letting y = −Du(x0), we obtain from (2.4) that

D2u(x0) ≥ −[D2c∗ (−Du(x0))]
−1 (2.5)

Since c∗ is convex, the symmetric matrix D2c∗ (−Du(x0)) is positive definite

as it is invertible. Therefore, (2.5) implies (2.3).

Lemma 2.1 Let Ω ⊂ Rd be an open set and suppose that (H3) holds. If

un : Ω → R is a sequence of c-convex functions such that un → u locally

uniformly in Ω with u locally bounded in Ω, then u is c-convex in Ω.

Proof: By definition of c-convexity we have

un(x) = sup
(y,λ)∈An

[−c(x− y)− λ] ∀x ∈ Ω,

for each n. Since c is continuous on Rd, without loss of generality we can

assume that each An is a closed subset of Rd × R.

Claim 1. If {yk} and {λk} are sequences such that there exists constants

A,B, r with

A ≤ −c(x0 − yk)− λk (2.6)

and

−c(x− yk)− λk ≤ B (2.7)

for all x ∈ B(x0, r) b Ω and for all k, then {yk} is a bounded sequence, and

consequently {λk} is also bounded.

Suppose by contradiction that {yk} is unbounded. Passing through a sub-

sequence we can assume that |yk| → +∞. Let vk := x0−yk. Since |vk| → +∞,

we may assume that |vk| > 1 for all k sufficiently large. Setting ζk := 1− r

|vk|
,

we have ζk → 1. Applying (2.7) at x = x0 + (ζk − 1)vk and using (2.6) we get

B ≥ −c(x0 + (ζk − 1)vk − yk))− λk = −c(ζkvk)− λk

≥ −c(ζkvk) + c(x0 − yk) + A = −c(ζkvk) + c(vk) + A.
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Hence

B − A ≥ c(vk)− c(ζkvk). (2.8)

Since c is convex, this difference can be bounded using a subgradient pk ∈
∂c(ζkvk):

B − A ≥ 〈pk, vk − ζkvk〉 = 〈pk, (1− ζk)vk〉 = r 〈pk,
vk
|vk|

〉. (2.9)

On the other hand, being pk a subgradient also implies that

c(0) ≥ c(ζkvk) + 〈pk, 0− ζkvk〉. (2.10)

Since |vk| → +∞, we have that ζk > 0 and dividing (2.10) by ζk|vk| → +∞
yields

lim inf
k→∞

〈pk,
vk
|vk|

〉 ≥ lim inf
k→∞

c(ζkvk)

|ζkvk|
.

The assumption lim|x|→+∞
c(x)

|x|
= +∞ implies that both these limits diverge,

yielding a contradiction with (2.9). Therefore yk is bounded and since c is

continuous we get from (2.6) that λk is also bounded and Claim 1 is proved.

Claim 2. For each x ∈ Ω there exists Nx ∈ N and a sequence

(yn(x), λn(x)) ∈ An

such that un(x) = −c(x− yn(x))− λn(x) for all n ≥ Nx.

Let rx ∈ (0, 1) such that B(x, rx) b Ω and u is bounded on B̄(x, rx). Then

since un → u uniformly on B̄(x, rx), there exist constants Mx > 0 and Nx ∈ N
such that

−Mx < un(z) < Mx ∀z ∈ B̄(x, rx), and ∀n ≥ Nx.

Since un is c-convex, for each n we can find a sequence {(ykn(x), λkn(x))}∞k=1 ⊂
An satisfying

un(x) = lim
k→∞

[−c(x− ykn(x))− λkn(x)],

un(x)− 1 ≤ −c(x− ykn(x))− λkn(x).
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Hence if n ≥ Nx, then

−Mx − 1 ≤ −c(x− ykn(x))− λkn(x),

and

−c(z − ykn(x))− λkn(x) ≤ un(z) ≤Mx ∀z ∈ B̄(x, rx).

Therefore from Claim 1, there exist (yn(x), λn(x)) ∈ An and a subsequence

{(ykj
n (x), λ

kj
n (x))}∞j=1 such that (y

kj
n (x), λ

kj
n (x)) → (yn(x), λn(x)) as j → ∞.

Therefore,

un(x) = lim
j→∞

[−c(x− ykj
n (x))− λkj

n (x)] = −c(x− yn(x))− λn(x)

and Claim 2 is proved.

Claim 3. Let

Bx = {(y, λ) ∈ Rd×R : (y, λ) = lim
j→∞

(ynj
(x), λnj

(x)), for some subsequence nj},

and set A = ∪x∈ΩBx. We claim that

u(z) = sup
(y,λ)∈A

[−c(z − y)− λ] ∀z ∈ Ω. (2.11)

Let z ∈ Ω and choose rz ∈ (0, 1) as above. Then B̄(z, rz) ⊂ Ω and as

before we have

−M(z) < un(x) < M(z) ∀x ∈ B̄(z, rz), ∀n ≥ Nz.

If (yn(z), λn(z)) is the sequence in Claim 2, we have that for any n ≥ Nz

−M(z) < −c(z−yn(z))−λn(z), and −c(x−yn(z))−λn(z) < M(z)∀x ∈ B̄(z, rz).

We conclude from Claim 1 that {yn(z)}∞n=Nz
and {λn(z)}∞n=Nz

are bounded.

Hence, there exist (y∗, λ∗) ∈ Rn×R and a subsequence {(ynk
(z), λnk

(z))}∞k=1 of

{(yn(z), λn(z))}∞n=Nz
such that (ynk

(z), λnk
(z)) → (y∗, λ∗). Therefore, (y∗, λ∗) ∈

Bz ⊂ A and

u(z) = lim
k→∞

unk
(z) = lim

k→∞
[−c(z − ynk

(z))− λnk
(z)] = −c(z − y∗)− λ∗.
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Thus to prove (2.11) it is enough to show that

−c(z − y)− λ ≤ u(z) ∀(y, λ) ∈ A.

Indeed, let (y, λ) ∈ A. Then (y, λ) ∈ Bx for some x ∈ Ω and hence there

exists a subsequence {(ynj
(x), λnj

(x))}∞j=1 of {(yn(x), λn(x))}∞n=Nx
such that

(ynj
(x), λnj

(x)) → (y, λ). We have

unj
(z) = −c(z − ynj

(z))− λnj
(z) ≥ −c(z − ynj

(x))− λnj
(x) ∀j.

Letting j →∞ and since (ynj
(x), λnj

(x)) → (y, λ), we then get

u(z) ≥ −c(z − y)− λ.

This completes the proof of the lemma. �

2.2 A Monge-Ampère measure associated with

the cost function c

In this subsection we define a generalized Monge-Ampère measure, and to

do it we need the following lemma, which is a generalization of a classical

lemma of Aleksandrov.

Lemma 2.2 Suppose that either (H1) or (H2) holds. Let X ⊂ Rn be a

nonempty bounded set and u : X → R ∪ {+∞}, not identically +∞, be

bounded from below on X. Then the Lebesgue measure of the set

S̃ = {p ∈ Rn : p ∈ ∂cu(x1) ∩ ∂cu(x2) for some x1, x2 ∈ X, x1 6= x2}

is zero.

Proof: Define for each y ∈ Rn,

u∗(y) = sup
x∈X

[−c(x− y)− u(x)].
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Since c ∈ C(Rn), X is bounded, u 6≡ +∞ and u is bounded from below on

X we get u∗ : Rn → R. Moreover, as c is locally Lipschitz on Rn, it is clear

that u∗ is also locally Lipschitz on Rn. Hence, if we let E = {x ∈ Rn :

u∗ is not differentiable at x}, then |E| = 0. We shall show that S̃ ⊂ E.

Indeed, let p ∈ S̃ then p ∈ ∂cu(x1) ∩ ∂cu(x2) for some x1, x2 ∈ X, x1 6= x2.

Hence,

u(z) ≥ u(x1)− c(z − p) + c(x1 − p) ∀z ∈ X,

u(z) ≥ u(x2)− c(z − p) + c(x2 − p) ∀z ∈ X.

Therefore,

−c(x1 − p)− u(x1) ≥ −c(z − p)− u(z) ∀z ∈ X,

−c(x2 − p)− u(x2) ≥ −c(z − p)− u(z) ∀z ∈ X.

Thus, u∗(p) = −c(x1 − p)− u(x1) and u∗(p) = −c(x2 − p)− u(x2). Moreover,

by definition of u∗ we have u∗(z) ≥ −c(x1 − z) − u(x1) ∀z ∈ Rn, and

u∗(z) ≥ −c(x2 − z)− u(x2) ∀z ∈ Rn. So

u∗(z) ≥ u∗(p)− c(x1 − z) + c(x1 − p) ∀z ∈ Rn

and

u∗(z) ≥ u∗(p)− c(x2 − z) + c(x2 − p) ∀z ∈ Rn.

Hence, we obtain x1, x2 ∈ ∂h(u
∗,Rn)(p) where we denote h(x) = c(−x) for

every x ∈ Rn. Note that h satisfies the same assumptions as c. Then by

Proposition 2.3 we must have p ∈ E since x1 6= x2. The proof is complete. �

Remark 2.7 Suppose c satisfies (H3). Let Ω be a bounded open set in Rn

and u ∈ C(Ω) be c-convex. Then

p ∈ ∂cu(x) if and only if x ∈ ∂h(u∗,Rn)(p),

where h(x) = c(−x) and u∗(y) = supx∈Ω [−c(x− y)− u(x)].
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Proof: It follows by the argument in Lemma 2.2 that if p ∈ ∂cu(x) then x ∈
∂h(u

∗,Rn)(p). Now if x ∈ ∂h(u∗,Rn)(p), then u∗(y) ≥ u∗(p)−c(x−y)+c(x−p)
for all y ∈ Rn. This gives by the definition of u∗ that for each y ∈ Rn,

u∗(y) ≥ −c(z−p)−u(z)− c(x−y)+ c(x−p) for all z ∈ Ω. Picking y ∈ ∂cu(x)
which is nonempty by Remark 2.4, then as u∗(y) = −c(x−y)−u(x) we obtain

u(z) ≥ u(x)− c(z− p) + c(x− p) for all z ∈ Ω. That is, p ∈ ∂cu(x) as desired.

�

Corollary 2.1 Let Ω be an open set in Rn and suppose that either (H1) or

(H2) holds. Let u : Ω → R ∪ {+∞} be such that on any bounded open set

U b Ω, u is not identical to +∞ and bounded from below. Then the Lebesgue

measure of the set

S = {p ∈ Rn : there exist x, y ∈ Ω, x 6= y and p ∈ ∂cu(x) ∩ ∂cu(y)}

is zero.

Proof: We can write Ω = ∪kΩk where Ωk ⊂ Ωk+1 are open and Ω̄k ⊂ Ω are

compact. If p ∈ S then there exist x, y ∈ Ω, x 6= y with u(z) ≥ u(x) − c(z −
p) + c(x − p) ∀z ∈ Ω, and u(z) ≥ u(y) − c(z − p) + c(y − p) ∀z ∈ Ω. Since

Ωk increases, x, y ∈ Ωm for some m. That is, if

Sm = {p ∈ Rn : ∃ x, y ∈ Ωm, x 6= y and p ∈ ∂c(u,Ωm)(x) ∩ ∂c(u,Ωm)(y)},

then we have p ∈ Sm, i.e., S ⊂ ∪∞m=1Sm. But by the assumptions and Lemma

2.2 we get |Sm| = 0 for all m. Hence the proof is complete. �

Lemma 2.3 Suppose c satisfies (H3). Let u : Ω → R be a locally bounded

function in Ω. If K ⊂ Ω is compact, then there exists R > 0, depending only

on K and the L∞-norm of u over a small neighborhood of K, such that

∂cu(K) ⊂ B(0, R).

Proof: Indeed, assume that this is not true. Then for each n ∈ N, there

exists xn ∈ K and pn ∈ ∂cu(xn) with |pn| > n. Hence u(x) ≥ u(xn) − c(x −
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pn) + c(xn − pn) ∀x ∈ Ω, and since u is locally bounded, there exists M > 0

such that

−c(x− pn) + c(xn − pn) ≤M ∀x ∈ Kδ and ∀n ∈ N, (2.12)

where δ =
1

2
min {dist(x, ∂Ω), 1} and Kδ = {x ∈ Ω : dist(x,K) ≤ δ}. Let

vn = xn − pn. Since |vn| → +∞, we may assume |vn| > 1 ∀n. Setting

ζn = 1− δ

|vn|
and evaluating (2.12) at x = xn + (ζn − 1)vn ∈ Kδ yields

M ≥ −c(xn + (ζn − 1)vn − pn) + c(xn − pn) = c(vn)− c(ζn vn).

Applying the argument used after the inequality (2.8) yields a contradiction.

This proves the lemma. �

Lemma 2.4 Suppose c : Rn → R is a continuous function. Let Ω ⊂ Rn be an

open set, u ∈ C(Ω), and B = {E ⊂ Ω : ∂cu(E) is Lebesgue measurable}. We

have

(i) If K ⊂ Ω is compact, then ∂cu(K) is closed. Moreover, if (H3) holds

then ∂cu(K) is compact.

(ii) B contains all closed subsets and all open subsets of Ω.

(iii) If either (H1) or (H2) holds, then B is a σ-algebra on Ω containing all

Borel subsets of Ω. Moreover,

|∂cu(Ω \ E)| = |∂cu(Ω) \ ∂cu(E)| ∀E ∈ B.

Proof: (i). LetK be a compact subset of Ω, {pn}∞n=1 ⊂ ∂cu(K), and suppose

pn → p. We shall show that p ∈ ∂cu(K). For each n, since pn ∈ ∂cu(K) we

have pn ∈ ∂cu(xn) for some xn ∈ K. But K is compact, so there exist x ∈ K

and a subsequence {xnk
} of {xn} such that xnk

→ x. We have

u(z) ≥ u(xnk
)− c(z − pnk

) + c(xnk
− pnk

) ∀z ∈ Ω,

passing to limit and since u and c are continuous we obtain

u(z) ≥ u(x)− c(z − p) + c(x− p) ∀z ∈ Ω.
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So p ∈ ∂cu(x) ⊂ ∂cu(K). Hence, ∂cu(K) is closed. The second statement then

follows from Lemma 2.3.

(ii). Let E be a closed subset of Ω. Then we can write E = ∪∞n=1Kn where

Kn are compact. Therefore, ∂cu(E) = ∂cu(∪∞n=1Kn) = ∪∞n=1∂cu(Kn). By (i),

each ∂cu(Kn) is Lebesgue measurable. So ∂cu(E) is measurable, i.e., E ∈ B.

The proof is identical if E is open.

(iii). Suppose {Ei}∞i=1 ⊂ B. Since ∂cu(∪∞i=1Ei) = ∪∞i=1∂cu(Ei) we then get

∂cu(∪∞i=1Ei) is Lebesgue measurable. So ∪∞i=1Ei ∈ B. We also have Ω ∈ B by

(ii). Now suppose E ∈ B, we shall show that Ω \ E ∈ B. Indeed, we have

∂cu(Ω \ E) = [∂cu(Ω) \ ∂cu(E)] ∪ [∂cu(Ω \ E) ∩ ∂cu(E)].

By Corollary 2.1, the second set on the right hand side has measure zero. So

∂cu(Ω \ E) is Lebesgue measurable and |∂cu(Ω\E)| = |∂cu(Ω)\∂cu(E)|. Also

since B is a σ-algebra and by (ii) B contains all closed subsets of Ω we get B
contains all Borel subsets of Ω. �

From Lemma 2.4 we then define

Definition 2.4 Let g be a locally integrable function which is positive a.e. on

Rn. Suppose that c satisfies either (H1) or (H2), and Ω is an open set in

Rn. Then for each given function u ∈ C(Ω), the generalized Monge-Ampère

measure of u associated with the cost function c and the weight g is the Borel

measure defined by

ωc(g, u)(E) =

∫
∂cu(E)

g(y) dy

for every Borel set E ⊂ Ω. When g ≡ 1, we simply write the measure as ωc(u).

Remark 2.8 The σ-additivity of ωc(g, u) follows from Corollary 2.1 and the

argument from [Gut01, Theorem 1.1.13].

Remark 2.9 If c satisfies (H2) and u ∈ C(Ω) is c-convex in Ω, then we know

from Lemma 2.4(i) that ∂cu(K) is compact for every compact set K ⊂ Ω.

Therefore the measure ωc(g, u) is finite on compact subsets of Ω, and so ωc(g, u)
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is a regular measure. Namely, it has the following regularity properties

ωc(g, u)(E) = inf {ωc(g, u)(U) : E ⊂ U ⊂ Ω, U open}

for all Borel sets E ⊂ Ω, and

ωc(g, u)(U) = sup {ωc(g, u)(K) : K ⊂ U, K compact}

for all open sets U ⊂ Ω.

Definition 2.5 Let u ∈ C(Ω) and x0 ∈ Ω. Then u is called strictly c-convex

at x0 if ∂cu(x0) 6= ∅ and for any p ∈ ∂cu(x0) we have

u(x) > u(x0)− c(x− p) + c(x0 − p)

for all x ∈ Ω \ {x0}.

Remark 2.10 The definition means precisely that the set of supporting hy-

persurfaces of u at x0 is nonempty and any such supporting hypersurface

touches the graph of u only at x0.

For u ∈ C(Ω), define Γu = {x ∈ Ω : ∂cu(x) 6= ∅}. Then Γu is a relatively

closed set in Ω since Γu = {x ∈ Ω : u∗(x) = u(x)}, where u∗ is the continuous

function defined in (4.1). We then have the following result noticing that

Γu = Ω iff u is c-convex in Ω.

Proposition 2.4 Suppose that c satisfies (H2) and c∗ ∈ C2(Rn). We have

1. If u ∈ C2(Ω), then

ωc(g, u)(E) =

∫
E∩Γu

g(x−Dc∗(−Du))| det(I +D2c∗(−Du)D2u)| dx

for all Borel sets E ⊂ Ω.

2. If in addition c ∈ C2(Rn) then for any u ∈ C2(Ω),

ωc(g, u)(E) =

∫
E∩Γu

g(x−Dc∗(−Du)) det(I +D2c∗(−Du)D2u) dx

for all Borel sets E ⊂ Ω.
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Proof: (1) Define s(x) = x − Dc∗(−Du(x)) for every x in Ω. Since c∗ ∈
C2(Rn) and u ∈ C2(Ω), it follows that s : Ω → Rn is a C1 mapping, and by

Proposition 2.3 we have ∂cu(x) = {s(x)} for every x in Ω satisfying ∂cu(x) 6= ∅.
Let Ã = {x ∈ Ω : u is not strictly c-convex at x} and let S be defined as in

Corollary 2.1. Then |S| = 0 and we claim that Ã = (Ω− Γu) ∪ (Γu ∩ s−1(S)).

Indeed, if x ∈ Ã and x ∈ Γu then p = s(x) ∈ ∂cu(x). Since ∂cu(x) can

not contain more than one element, there exists y ∈ Ω, y 6= x such that

u(y) = u(x)− c(y − p) + c(x− p). Hence,

u(z) ≥ u(x)− c(z − p) + c(x− p) = u(y)− c(z − p) + c(y − p)

for every z in Ω. So p ∈ ∂cu(x) ∩ ∂cu(y), i.e., x ∈ s−1(S). This implies the

claim as the reverse relation is obvious. We now let S
′ ⊂ Rn be a Borel set

such that S ⊂ S
′

and |S ′| = 0. Put A = (Ω − Γu) ∪ (Γu ∩ s−1(S
′
)), then

clearly A is a measurable set, Ã ⊂ A, and as ∂cu(A) = ∂cu(Γu ∩ s−1(S
′
)) =

s(Γu ∩ s−1(S
′
)) ⊂ S

′
we have |∂cu(A)| = 0. We now proceed the proof as

follows. From the definition of Ã it is easy to see that s is one-to-one on Ω\ Ã,

and hence one-to-one on Ω \ A. Therefore for any Borel subset E of Ω, by

using the usual change variables formula we obtain∫
E∩Γu

g(x−Dc∗(−Du))| det(I +D2c∗(−Du)D2u)| dx

=

∫
E∩Γu

g(s(x))| detDs(x)| dx ≥
∫
E\A

g(s(x))| detDs(x)| dx

=

∫
s(E\A)

g(y) dy =

∫
∂cu(E\A)

g(y) dy
(∗)
=

∫
∂cu(E)

g(y) dy = ωc(g, u)(E).

Note that the equality (∗) holds since |∂cu(E) − ∂cu(E \ A)| = |∂cu(E −
(E \ A))| = |∂cu(E ∩ A)| = 0. Thus we have proved that∫

E∩Γu

g(x−Dc∗(−Du)) det(I +D2c∗(−Du)D2u) dx ≥ ωc(g, u)(E)

for every Borel set E ⊂ Ω. Hence, (1) will be proved if we can show the reverse

inequality. To do that, let B = {x ∈ Ω : detDs(x) = 0} and let E be a Borel

set in Ω. Then for any open set U with E ⊂ U ⊂ Ω, we can write the open
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set U \ B as U \ B = ∪∞i=1Ci where {Ci}∞i=1 are cubes with disjoint interior

and sides parallel to the coordinate axes. We can choose Ci are small enough

so that s : Ci → s(Ci) is a diffeomorphism. We therefore have∫
E∩Γu

g(x−Dc∗(−Du))| det(I +D2c∗(−Du)D2u)| dx

≤
∫
U∩Γu

g(s(x))| detDs(x)| dx =

∫
(U\B)∩Γu

g(s(x))| detDs(x)| dx

=

∫
(∪∞i=1Ci)∩Γu

g(s(x))| detDs(x)| dx =

∫
(∪∞i=1

◦
Ci)∩Γu

g(s(x))| detDs(x)| dx

=
∞∑
i=1

∫
◦
Ci∩Γu

g(s(x))| detDs(x)| dx =
∞∑
i=1

∫
s(

◦
Ci∩Γu)

g(y) dy

=
∞∑
i=1

ωc(g, u)(
◦
Ci ∩ Γu) = ωc(g, u)((∪∞i=1

◦
Ci) ∩ Γu) ≤ ωc(g, u)(U).

Hence since the measure ωc(g, u) is regular, we deduce that∫
E∩Γu

g(x−Dc∗(−Du))| det(I +D2c∗(−Du)D2u)| dx ≤ ωc(g, u)(E).

This combined with the previous inequality yield the desired result for (1).

(2) This is a consequence of (1) and Remark 2.6. �
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CHAPTER 3

Notions Of Weak Solutions

3.1 Aleksandrov Solutions

The equation (1.2) is highly fully nonlinear and at least when the cost func-

tion c is nice enough, it is degenerate elliptic on the set of c-convex functions.

Motivated by Proposition 2.4 and by using the previous results we shall define

a notion of weak solutions for (1.2) and study the stability property of the

solutions.

Definition 3.1 We say that a c-convex function u ∈ C(Ω) is a generalized

solution of (1.2) in the sense of Aleksandrov, or simply Aleksandrov solution,

if

ωc(g, u)(E) =

∫
E

f(x) dx

for any Borel set E ⊂ Ω.

Remark 3.1 In (1.2) the function f on the right hand side can be replaced by

a locally finite Borel measure µ on Ω. And as above a notion of Aleksandrov

solutions can be defined similarly.

Proposition 3.1 Suppose c satisfies (H2), and that c, c∗ ∈ C2(Rn). Let u ∈
C(Ω) be a c-convex function. Then u is an Aleksandrov solution of (1.2)

iff ωc(g, u) is absolutely continuous w.r.t. the Lebesgue measure and (1.2) is

satisfied pointwise a.e. on Ω.
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Proof: Observing first that by [GM96, Corollary C.5], u is locally semi-

convex1 and hence twice differentiable a.e. on Ω in the sense of Aleksandrov.

Also, by using Remark 2.6 and an argument similar to [McC97, Proposition

A.2] we have that whenever u has an Aleksandrov second derivative D2u(x0)

at x0 ∈ Ω then

lim
r→0+

|∂cu(Br(x0))|
|Br(x0)|

= det[I +D2c∗(−Du(x0))D
2u(x0)], (3.1)

and if in addition I +D2c∗(−Du(x0))D
2u(x0) is invertible, then ∂cu(Br(x0))

shrinks nicely to x0 −Dc∗(−Du(x0)).

Suppose ωc(g, u) is absolutely continuous w.r.t. the Lebesgue measure on

the σ-algebra of Borel sets in Ω and with density F (x). The proposition will

be proved if we can show that

F (x) = g(x−Dc∗(−Du(x))) det[I+D2c∗(−Du(x))D2u(x)] a.e. x in Ω. (3.2)

Since g > 0 a.e. on Rn we get ωc(u) is also absolutely continuous w.r.t. the

Lebesgue measure. Combining this with (3.1) we see that

det[I +D2c∗(−Du(x))D2u(x)]

is the density of ωc(u). Now let M be the set of points x ∈ Ω satisfying u has

Aleksandrov second derivative at x and det[I+D2c∗(−Du(x))D2u(x)] > 0, and

let H be a Borel set in Rn with Lebesgue measure zero such that every point in

Rn\H is a Lebesgue point of g. Define E = {x ∈M : x−Dc∗(−Du(x)) ∈ H}.
Then it is clear from Remark 2.7 that E = ∂h(u

∗,Rn)(H)∩M and hence E is

Lebesgue measurable by Lemma 2.4 as u∗ ∈ C(Rn). We claim that |E| = 0.

Indeed, let K ⊂ E be a compact set then we have ∂cu(K) ⊂ ∂cu(E) ⊂
H. Hence,

∫
K

det[I +D2c∗(−Du(x))D2u(x)] dx = ωc(u)(K) = 0. This im-

plies that |K| = 0 as the integrand is positive on K. Since E is Lebesgue mea-

surable, the claim follows because |E| = sup{|K| : K ⊂ E, K is compact}.
1This means that given x ∈ Ω there exist a ball Br(x) and a nonnegative constant λ such

that u(x) + λ|x|2 is convex on Br(x) in the standard sense, see [GM96, p. 134].
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For each x ∈ M − E since I + D2c∗(−Du(x))D2u(x) is positive definite

we get ∂cu(Br(x)) shrinks nicely to x−Dc∗(−Du(x)), a Lebesgue point of g.

Consequently,

lim
r→0+

ωc(g, u)(Br(x))

|Br(x)|
= lim

r→0+

|∂cu(Br(x))|
|Br(x)|

1

|∂cu(Br(x))|

∫
∂cu(Br(x))

g(y) dy

= g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] ∀x ∈M − E.

Thus we obtain

F (x) = g(x−Dc∗(−Du(x))) det[I+D2c∗(−Du(x))D2u(x)] a.e. on M. (3.3)

On the other hand, by letting B be a Borel set in Ω such that M ⊂ B and

|M | = |B| we have |∂cu(Ω−B)| =
∫

Ω−B det[I +D2c∗(−Du(x))D2u(x)] dx = 0

since det[I +D2c∗(−Du(x))D2u(x)] is zero a.e. on Ω−M . Therefore,∫
Ω−B

F (x) dx = ωc(g, u)(Ω−B) =

∫
∂cu(Ω−B)

g(y) dy = 0,

which gives F (x) = 0 a.e. on Ω−B. This implies that

F (x) = g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] a.e. on Ω−M.

(3.4)

From (3.3) and (3.4) we get (3.2) and the proof is complete. �

A problem considered in this thesis is whether (1.2) has a unique general-

ized solution in the sense of Aleksandrov satisfying certain boundary condition.

There are some obstructions to the existence of a solution, and one needs to

impose some conditions on the datum and Ω. An obvious necessary condition

of solvability is ∫
Ω

f(x)dx ≤
∫

Rn

g(y)dy =: B(g). (3.5)

If B(g) = +∞, then (3.5) is not a restriction on the function f(x). Another

condition one may assume is that Ω is strictly convex.

In order to solve the Dirichlet problem for the equation (1.2) we need the

following lemma.
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Lemma 3.1 Let Ω ⊂ Rn be a bounded open set and uk ∈ C(Ω) be a sequence

such that uk → u uniformly on compact subsets of Ω.

(i) If K ⊂ Ω is compact, then

lim sup
k→∞

∂cuk(K) ⊂ ∂cu(K),

and by Fatou

lim sup
k→∞

ωc(g, uk)(K) ≤ ωc(g, u)(K).

(ii) Assume further that (H2) holds, uk are c-convex on Ω and for every

subsequence {kj} and {zkj
} ⊂ Ω with zkj

→ z0 ∈ ∂Ω, we have

lim inf
j→∞

u(zkj
) ≤ lim sup

j→∞
ukj

(zkj
). (3.6)

If K is compact and U is open such that K ⊂ U ⊂ Ω, then we get

∂cu(K) ⊂ lim inf
k→∞

∂cuk(U)

where the inclusion holds for almost every point of the set on the left

hand side, and by Fatou

ωc(g, u)(K) ≤ lim inf
k→∞

ωc(g, uk)(U).

Proof: (i). Let p ∈ lim supk→∞ ∂cuk(K). Then for each n, there exist kn

and xkn ∈ K such that p ∈ ∂cukn(xkn). By selecting a subsequence {xj} of

{xkn} we may assume xj → x0 ∈ K. On the other hand,

uj(x) ≥ uj(xj)− c(x− p) + c(xj − p) ∀x ∈ Ω

and by letting j →∞, the uniform convergence of uj on compacts yields

u(x) ≥ u(x0)− c(x− p) + c(x0 − p) ∀x ∈ Ω

that is, p ∈ ∂cu(x0).

(ii). Without loss of generality we can assume that U ⊂ Ω.
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Let A = {(x, p)|x ∈ K and p ∈ ∂cu(x)} and for every z ∈ Rn we define

the auxiliary function v(z) = sup(x,p)∈A fx,p(z), where for each (x, p) ∈ A we

denote fx,p(z) = −c(z − p) + c(x− p) + u(x) for all z ∈ Rn. We first observe

that since ∂cu(K) is bounded by Lemma 2.3 and c is locally Lipschitz it is

easy to see that v is locally Lipschitz on Rn. If (x, p) ∈ A, then u(z) ≥ fx,p(z)

for z ∈ Ω and so v ≤ u on Ω. Since by Lemma 2.1 u is c-convex, then by

taking p ∈ ∂cu(z) we have v(z) ≥ fz,p(z) = u(z) for z ∈ K and so v = u

in K. Moreover, ∂c(v,Rn)(x) = ∂cu(x) for every x in K. Now let S = {p ∈
Rn : p ∈ ∂c(v,Rn)(x1) ∩ ∂c(v,Rn)(x2) for some x1, x2 ∈ Rn, x1 6= x2}. By

Corollary 2.1, |S| = 0. Therefore (ii) will be proved if we can show that

∂c(v,Rn)(K) \ S ⊂ lim infk→∞ ∂cuk(U). Let p ∈ ∂c(v,Rn)(K) \ S, then there

exists x0 ∈ K such that p ∈ ∂c(v,Rn)(x0) and p 6∈ ∂c(v,Rn)(x) for every x in

Rn \ {x0}. Hence we have

v(x) > v(x0)− c(x− p) + c(x0 − p) ∀x ∈ Rn \ {x0}. (3.7)

Now let δk := minx∈U {uk(x)− uk(x0) + c(x− p)− c(x0 − p)}. Then this min-

imum is attained at some xk ∈ U . So δk = uk(xk)−uk(x0)+c(xk−p)−c(x0−p)
and uk(x) ≥ uk(x0)− c(x− p) + c(x0 − p) + δk ∀x ∈ U . Thus we obtain

uk(x) ≥ uk(xk)− c(x− p) + c(xk − p) ∀x ∈ U. (3.8)

We first claim that xk → x0. Indeed, let {xkj
} be any convergent subsequence

of {xk}, say to x̄ ∈ U . If x̄ 6= x0 then since uk → u uniformly on U , passing

to the limit in (3.8) and using (3.7) we get

u(x) ≥ u(x̄)− c(x− p) + c(x̄− p)

≥ v(x̄)− c(x− p) + c(x̄− p)

> v(x0)− c(x̄− p) + c(x0 − p)− c(x− p) + c(x̄− p)

= u(x0)− c(x− p) + c(x0 − p) ∀x ∈ U,

in particular, u(x0) > u(x0), a contradiction. So we must have xkj
→ x0 and

hence we obtain xk → x0 ∈ U .
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We next claim that there exists k0 such that for all k ≥ k0 we have

uk(x) ≥ uk(xk)− c(x− p) + c(xk − p) ∀x ∈ Ω,

in other words, the inequality (3.8) holds true in Ω. Otherwise, we can find a

subsequence {kj} and {zkj
} ⊂ Ω \ U such that

ukj
(zkj

) < ukj
(xkj

)− c(zkj
− p) + c(xkj

− p) ∀j. (3.9)

Since Ω is bounded, passing through a subsequence, we can assume that zkj
→

z0 ∈ Ω \ U . If z0 ∈ Ω \ U , then by letting j → ∞ in (3.9) and using the

assumption that ukj
→ u uniformly on compact subsets of Ω, we deduce that

v(z0) ≤ u(x0)− c(z0 − p) + c(x0 − p) = v(x0)− c(z0 − p) + c(x0 − p). (3.10)

On the other hand, if z0 ∈ ∂Ω, then from (3.9) we obtain

lim sup
j→∞

ukj
(zkj

) ≤ u(x0)− c(z0− p) + c(x0− p) = v(x0)− c(z0− p) + c(x0− p).

But (3.6) and since u ≥ v on Ω yield

lim sup
j→∞

ukj
(zkj

) ≥ lim inf
j→∞

u(zkj
) ≥ lim inf

j→∞
v(zkj

) = v(z0),

and therefore (3.10) also holds. This gives a contradiction with (3.7) since

z0 6= x0. So the claim is proved. But then we get p ∈ ∂cuk(xk) for all k ≥ k0

and hence p ∈ lim infk→∞ ∂cuk(U) as xk → x0 ∈ U . This completes the proof.

�

As an immediate consequence we have the following stability property,

which will be useful in various contexts later.

Corollary 3.1 Let Ω ⊂ Rn be a bounded open set and suppose that (H2)

holds. If {uk} ⊂ C(Ω) is a sequence of c-convex functions converging locally

uniformly in Ω to a function u and condition (3.6) holds, then ωc(g, uk) tend

to ωc(g, u) weakly, i.e.,∫
Ω

f(x) dωc(g, uk) →
∫

Ω

f(x) dωc(g, u)

for any f in C0(Ω).



27

Remark 3.2 We note that by following the proof of Lemma 3.1 we see that if

either uk are in C1(Ω) or uk are convex in the standard sense, then the above

results still hold without condition (3.6). The reason is that in these cases we

have that (3.8) holds for every x in an open neighborhood of xk iff it holds for

every x in Ω. However, this seems no longer true if uk are merely c-convex.

We also remark that (3.6) is satisfied if either uk → u locally uniformly and

uk ≥ u on Ω or uk → u uniformly on Ω. The verification is obvious in the

first case, while for the latter we just use the fact that lim supj→∞ {aj + bj} ≥
lim supj→∞ aj + lim infj→∞ bj and apply for aj = [ukj

(zkj
) − u(zkj

)] and bj =

u(zkj
).

3.2 Viscosity Solutions

In this section we shall introduce a notion of viscosity solutions for the

equation (1.2) when the function f on the right hand side is continuous. We

also study the relationship between these solutions with Aleksandrov solutions

defined in the previous section. More generally, we consider the Monge-Ampère

type equation of the form

det[I +D2c∗(−Du(x))D2u(x)] = F (x, u(x), Du(x)) in Ω (3.11)

where F ∈ C(Ω× R× Rn) is nonnegative.

Definition 3.2 A c-convex function u ∈ C(Ω) is said to be a viscosity sub-

solution (or supersolution) of (3.11) if for any c-convex C2 function ψ on Ω

such that u−ψ has a strict local maximum (or strict local minimum) at some

x0 ∈ Ω we have

det[I +D2c∗(−Dψ(x0))D
2ψ(x0)] ≥ (≤) F (x0, u(x0), Dψ(x0)).

And u is said to be a viscosity solution of (3.11) if it is both a viscosity subso-

lution and supersolution.
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CHAPTER 4

Maximum Principles

Let Ω be a bounded open set in Rn and u ∈ C(Ω). Consider the classes of

functions

F (u) := {v : v is c-convex in Ω and v(x) ≤ u(x) ∀x ∈ Ω},

G(u) := {w : w is c-concave in Ω and w(x) ≥ u(x) ∀x ∈ Ω},

where w is called c-concave if −w is c-convex. Let

u∗(x) := sup
v∈F (u)

v(x) and u∗(x) := inf
w∈G(u)

w(x). (4.1)

Then u∗ is c-convex and u∗ is c-concave on Ω. Moreover, if c satisfies condition

(H3), then it follows from Remark 2.5 that u∗ and u∗ are in C(Ω). We call

these functions the c-convex and c-concave envelopes of u in Ω respectively,

and we have the inequalities

u∗(x) ≤ u(x) ≤ u∗(x) ∀x ∈ Ω.

We also have that F (−u) = −G(u), and hence

−(u∗)(x) = − inf
w∈G(u)

w(x) = sup
w∈G(u)

−w(x)

= sup
−v∈G(u)

v(x) = sup
v∈−G(u)

v(x) = sup
v∈F (−u)

v(x) = (−u)∗(x). (4.2)
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Consider the set of contact points

C∗(u) := {x ∈ Ω : u∗(x) = u(x)} ; C∗(u) := {x ∈ Ω : u∗(x) = u(x)}

which are relative closed in Ω if c satisfies (H3). Then by (4.2) we get

C∗(u) = C∗(−u). (4.3)

Since u(x) ≥ u∗(x) for every x in Ω, it is clear that

∂c(u∗)(C∗(u)) ⊂ ∂cu(C∗(u)). (4.4)

It is easy to check that if x0 6∈ C∗(u), then ∂cu(x0) = ∅. Also if A and B are

sets, then ∂cu(A ∪B) = ∂cu(A) ∪ ∂cu(B). Hence,

∂cu(Ω) = ∂cu(C∗(u)) ∪ ∂cu(Ω \ C∗(u)) = ∂cu(C∗(u)). (4.5)

Let p ∈ ∂cu(C∗(u)), then p ∈ ∂cu(x0) for some x0 ∈ C∗(u). Hence,

u(x) ≥ u(x0)− c(x− p) + c(x0 − p) = u∗(x0)− c(x− p) + c(x0 − p) ∀x ∈ Ω.

But then by definition of u∗ we get u∗(x) ≥ u∗(x0)−c(x−p)+c(x0−p) ∀x ∈ Ω.

So p ∈ ∂cu∗(x0). Therefore,

∂cu(C∗(u)) ⊂ ∂c(u∗)(C∗(u)). (4.6)

From (4.4), (4.5), (4.6) we obtain

∂cu(Ω) = ∂cu(C∗(u)) = ∂c(u∗)(C∗(u)). (4.7)

Let

∂cu(x0) = {p ∈ Rn : u(x) ≤ u(x0) + c(x− p)− c(x0 − p) ∀x ∈ Ω}

be the c-superdifferential of u at x0. Notice then that ∂c(−u)(x0) = ∂cu(x0).

Lemma 4.1 Let c : Rn → R be a continuous function and Ω ⊂ Rn be a

bounded open set. Suppose u ∈ C(Ω̄) is such that u ≤ 0 on ∂Ω. Then for any

x0 ∈ Ω with u(x0) > 0, we have

Ω(x0, u(x0)) ⊂ ∂c(u∗)(C∗(u))

where Ω(x, t) = {y ∈ Rn : c(z − y)− c(x− y) + t > 0 ∀z ∈ Ω̄}.
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Proof: Let y ∈ Ω(x0, u(x0)), then

c(z − y)− c(x0 − y) + u(x0) > 0 ∀z ∈ Ω̄. (4.8)

Let

λ0 := inf{λ : λ+ c(z − y)− c(x0 − y) ≥ u(z) ∀z ∈ Ω̄}.

By continuity we have

λ0 + c(z − y)− c(x0 − y) ≥ u(z) ∀z ∈ Ω̄. (4.9)

Consider the minimum

min
z∈Ω̄

[λ0 + c(z − y)− c(x0 − y)− u(z)]

which is nonnegative by (4.9). This minimum is attained at some point z̄ ∈ Ω̄,

and we have

λ0 + c(z̄ − y)− c(x0 − y)− u(z̄) = 0, (4.10)

because on the contrary

λ0 + c(z − y)− c(x0 − y)− u(z) ≥ ε > 0 ∀z ∈ Ω̄

and λ0 would not be the minimum. We now claim that z̄ ∈ Ω. Indeed, since

u ≤ 0 on ∂Ω, the claim will be proved if we show that u(z̄) > 0. By taking

z = x0 in (4.9) we get λ0 ≥ u(x0), and consequently by (4.8)

c(z − y)− c(x0 − y) + λ0 > 0 ∀z ∈ Ω̄.

Combining with (4.10) yields u(z̄) = c(z̄ − y) − c(x0 − y) + λ0 > 0. Thus we

must have z̄ ∈ Ω. Therefore we have proved that if y ∈ Ω(x0, u(x0)), then

there exists z̄ ∈ Ω such that

u(z̄) = c(z̄ − y)− c(x0 − y) + λ0,

and since the above minimum is zero we also have

u(z) ≤ λ0 + c(z − y)− c(x0 − y) ∀z ∈ Ω̄.
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Therefore by definition of u∗ we obtain

u(z) ≤ u∗(z) ≤ λ0 + c(z − y)− c(x0 − y) ∀z ∈ Ω.

In particular,

u(z̄) ≤ u∗(z̄) ≤ λ0 + c(z̄ − y)− c(x0 − y) = u(z̄).

So u∗(z̄) = λ0 + c(z̄ − y) − c(x0 − y) = u(z̄) and hence z̄ ∈ C∗(u). Moreover

by combining with the above inequality we get

u∗(z) ≤ λ0 + c(z − y)− c(x0 − y) = u∗(z̄) + c(z − y)− c(z̄ − y) ∀z ∈ Ω.

So y ∈ ∂c(u∗)(z̄) ⊂ ∂c(u∗)(C∗(u)) and this completes the proof. �

We notice that from Lemma 4.1, (4.2), (4.3) and (4.7) we have

Ω(x0, u(x0)) ⊂ ∂c(u∗)(C∗(u)) = ∂c(−(u∗))(C∗(u))

= ∂c((−u)∗)(C∗(u)) = ∂c((−u)∗)(C∗(−u)) = ∂c(−u)(C∗(−u)). (4.11)

Suppose c : Rn → R is a continuous cost function satisfying c(0) =

minx∈Rn c(x). Let Ω ⊂ Rn be a bounded open set. For each x in Ω and

each t ≥ 0, let Ω(x, t) be as in Lemma 4.1, i.e.,

Ω(x, t) = {y ∈ Rn : −t− c(z − y) + c(x− y) < 0,∀z ∈ Ω̄},

and define

Ω̃(x, t) = {y ∈ Rn : −t− c(z − y) + c(x− y) ≤ 0,∀z ∈ Ω̄}.

First observe that Ω(x, 0) = ∅, x ∈ Ω(x, t) for any t > 0 and Ω̃(x, t) is closed.

Since c is uniformly continuous on any bounded set of Rn, it is easy to see that

Ω(x, t) is an open set for every x in Ω and every t ≥ 0. Also if 0 ≤ t1 < t2 then

Ω(x, t1) ⊂ Ω̃(x, t1) ⊂ Ω(x, t2), and ∪t≥0Ω(x, t) = Rn. Particularly, we have

Ω(x, t1) ∩B(x, t1) ⊂ Ω(x, t2) ∩B(x, t2) where the first set is compact and the

later is a nonempty open set. Therefore, for any x ∈ Ω and any 0 ≤ t1 < t2,

we have that

|Ω(x, t1) ∩B(x, t1)| < |Ω(x, t2) ∩B(x, t2)|. (4.12)

The following lemma will be needed later.
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Lemma 4.2 Suppose c satisfies either (H1) or (H2), and c(0) = minx∈Rn c(x).

Then |Ω̃(x, t)− Ω(x, t)| = 0 for all x ∈ Ω and all t > 0.

Proof: Let x0 ∈ Ω and t0 > 0. Define

F = {c-convex function v ∈ C(Ω) : v ≤ 0 on Ω and v(x0) ≤ −t0}

and

w(x) = sup
v∈F

v(x) ∀x ∈ Ω.

If we let v(x) = −t0−c(x−x0)+c(0) then it is clear that v ∈ F . So F 6= ∅ and

moreover we have w is bounded from below on Ω, w ≤ 0 on Ω and w(x0) = −t0.
By using w(x0) = −t0 it is easy to see that Ω̃(x0, t0) = ∂c(w,Ω)(x0)

1. Now let

S̃ = {p ∈ Rn : p ∈ ∂c(w,Ω)(x1)∩∂c(w,Ω)(x2) for some x1, x2 ∈ Ω, x1 6= x2}.

Then |S̃| = 0 by Lemma 2.2. We shall complete the proof by showing that

Ω̃(x0, t0) − Ω(x0, t0) ⊂ S̃. Indeed, if y ∈ Ω̃(x0, t0) is such that y 6∈ S̃ then as

y ∈ ∂c(w,Ω)(x0) we get −t0− c(z− y) + c(x0− y) < w(z) for all z in Ω \ {x0}.
Particularly, since w ≤ 0 on Ω and−t0 < 0 we obtain−t0−c(z−y)+c(x0−y) <
0 for all z in Ω. That is, y ∈ Ω(x0, t0) and hence Ω̃(x0, t0) − Ω(x0, t0) ⊂ S̃ as

desired. �

Now suppose g ∈ L1
loc(Rn) is positive a.e. on Rn. Let B(g) =

∫
Rn g(y) dy

and for each t ≥ 0, define

h(t) = inf
x∈Ω

∫
Ω(x,t)∩B(x,t)

g(y) dy. (4.13)

Then clearly h : [0,+∞) → [0, B(g)) with h(0) = 0. We remark that by using

the Dominated Convergence Theorem and Lemma 4.2 it can be shown easily

that the function f(x) :=
∫

Ω(x,t)∩B(x,t)
g(y) dy is continuous on Ω (a similar

argument will be employed in the proof of Lemma 4.3 below). Therefore, in

the definition of h the infimum is achieved, i.e.,

h(t) = min
x∈Ω

∫
Ω(x,t)∩B(x,t)

g(y) dy.

By this fact and (4.12), we also have h is strictly increasing.

1Notice that if c satisfies (H3), then from Lemma 2.3 the set Ω̃(x, t) is bounded whenever
x ∈ Ω.
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Lemma 4.3 Suppose c satisfies either (H1) or (H2), and c(0) = minRn c(x).

Let Ω ⊂ Rn be a bounded open set. Then the map h : [0,+∞) → [0, B(g))

is continuous, strictly increasing, and onto with h(0) = 0. Consequently, it is

invertible and h−1 : [0, B(g)) → [0,+∞) is also continuous, strictly increasing

with h−1(0) = 0.

Proof: It remains to prove h is continuous and onto. Firstly, let t0 ∈ [0,+∞)

and we want to show h is continuous at t0. For this it suffices to prove that for

any sequence {tn} ⊂ (0,+∞) with tn → t0, there exists a subsequence {nj}
such that h(tnj

) → h(t0). If {tn} is such a sequence, then by the remark before

this lemma there exists {xn} ⊂ Ω satisfying

h(tn) =

∫
Ω(xn,tn)∩B(xn,tn)

g(y) dy ∀n.

As Ω is bounded we can find a subsequence {xnj
} of {xn} and x0 ∈ Ω so that

xnj
→ x0 as j →∞. We consider the following two cases.

Case 1: t0 = 0. We have

h(tnj
) =

∫
Ω(xnj ,tnj )∩B(xnj ,tnj )

g(y) dy

=

∫
B(x0,1)

g(y)χΩ(xnj ,tnj )∩B(xnj ,tnj )(y) dy −→ 0 = h(0)

by the Dominated Convergence Theorem since χΩ(xnj ,tnj )∩B(xnj ,tnj )(y) −→ 0

for all y 6= x0.

Case 2: t0 > 0. We have

h(tnj
) =

∫
Ω(xnj ,tnj )∩B(xnj ,tnj )

g(y) dy =

∫
B(x0,2t0)

g(y)χΩ(xnj ,tnj )∩B(xnj ,tnj )(y) dy

−→
∫
B(x0,2t0)

g(y)χΩ(x0,t0)∩B(x0,t0)(y) dy =

∫
Ω(x0,t0)∩B(x0,t0)

g(y) dy

by the Dominated Convergence Theorem since

χΩ(xnj ,tnj )∩B(xnj ,tnj )(y) −→ χΩ(x0,t0)∩B(x0,t0)(y)

for all y 6= E := [(Ω̃(x0, t0) − Ω(x0, t0)) ∩ B(x0, t0)] ∪ [Ω̃(x0, t0) ∩ ∂B(x0, t0)],

which has Lebesgue measure zero by Lemma 4.2. This can be easily verified
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by noticing the fact that Rn = [Ω(x0, t0)∩B]∪Ω̃(x0, t0)
c∪B(x0, t0)

c∪E. Thus

we have shown that

h(tnj
) −→

∫
Ω(x0,t0)∩B(x0,t0)

g(y) dy.

Now we claim that
∫

Ω(x0,t0)∩B(x0,t0)
g(y) dy = h(t0). Indeed, for each x ∈ Ω we

have ∫
Ω(x,t0)∩B(x,t0)

g(y) dy = lim
j→∞

∫
Ω(x,tnj )∩B(x,tnj )

g(y) dy

≥ lim inf
j→∞

h(tnj
) =

∫
Ω(x0,t0)∩B(x0,t0)

g(y) dy

where we have again used Lemma 4.2 in the first equality. Therefore, by taking

the infimum on the left hand side we obtain h(t0) ≥
∫

Ω(x0,t0)∩B(x0,t0)
g(y) dy.

So the claim is proved since the reverse inequality is obvious. Thus we get

h(tnj
) → h(t0) as desired. This implies that h is continuous at t0.

Secondly, we want to show that h is onto. We know that h(0) = 0. Now if

we let a ∈ (0, B(g)) then since∫
Ω(0,t)∩B(0,t)

g(y) dy −→ B(g) as t→ +∞

we can find a t0 > 0 such that a <
∫

Ω(0,t0)∩B(0,t0)
g(y) dy < B(g). For any

x ∈ Ω and any y ∈ Ω(0, t0) ∩B(0, t0) we have

− c(z − y) + c(x− y) = −c(z − y) + c(−y) + [c(x− y)− c(−y)]

< t0 + sup
w1∈Ωt0 ;w2∈B(0,t0)

|c(w1)− c(w2)| =: t1 < +∞ ∀z ∈ Ω

where Ωt0 = {y ∈ Rn : dist(y,Ω) < t0}. Consequently, Ω(0, t0) ∩ B(0, t0) ⊂
Ω(x, t1) ∩ B(0, t0) for all x in Ω. Hence, by picking t1 sufficiently large if

necessary we can assume that Ω(0, t0) ∩B(0, t0) ⊂ Ω(x, t1) ∩B(x, t1) for all x

in Ω. This implies that
∫

Ω(0,t0)∩B(0,t0)
g(y) dy ≤ h(t1). Therefore, we obtain

h(0) = 0 < a <

∫
Ω(0,t0)∩B(0,t0)

g(y) dy ≤ h(t1) < B(g).
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But then since h is continuous on [0,+∞), there must exist a t2 ∈ (0,+∞) so

that h(t2) = a, which means that h is onto. �

From now on for convenience we will consider h−1 as a one-to-one function

from [0, B(g)] onto [0,+∞] with h−1(B(g)) = +∞. Therefore, h−1(a) < +∞
only if 0 ≤ a < B(g). By combining the previous results we obtain the

following maximum principle which holds for any continuous function on Ω̄.

Theorem 4.1 Suppose c satisfies either (H1) or (H2), and c(0) = minRn c(x).

Let g ∈ L1
loc(Rn) be positive a.e. and Ω be a bounded open set in Rn. If

u ∈ C(Ω̄) then

max
Ω

u(x) ≤ max
∂Ω

u(x) + h−1(ωc(g,−u)(Ω)).

Proof: Let M = max∂Ω u(x) and let x0 ∈ Ω be such that u(x0) > M . By

Lemma 4.1 and (4.11) we have Ω(x0, u(x0)−M) ⊂ ∂c(−u+M)(C∗(−u+M)) =

∂c(−u)(Ω). This gives

h(u(x0)−M) ≤
∫

Ω(x0,u(x0)−M)

g(y) dy ≤
∫
∂c(−u)(Ω)

g(y) dy = ωc(g,−u)(Ω).

Hence by taking the inverse we obtain u(x0) ≤ M + h−1(ωc(g,−u)(Ω)) and

the proof is complete. �

We end this section noticing that if the cost function c is convex, C1 and

satisfies that there exist positive constants A, α such that |Dc(x)| ≤ A|x|α

for all x in Rn then Theorem 4.1 also holds with the function h defined in a

simpler way, namely h(t) = infx∈Ω̄

∫
B(x,t)

g(y) dy = minx∈Ω̄

∫
B(x,t)

g(y) dy. The

advantage of this definition is that it is independent of c and in many cases

when the function g is simple enough we can calculate h and h−1 exactly. For

example, when g ≡ 1 we have the following result which is an extension of the

well known Aleksandrov-Bakelman-Pucci maximum principle.

Theorem 4.2 Suppose c : Rn → R is a C1 and convex function satisfying

there exist positive constants A, α such that |Dc(x)| ≤ A|x|α for all x in Rn.

Let Ω be a bounded open set in Rn. We have
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(a) If u ∈ C(Ω̄) then

max
Ω

u(x) ≤ max
∂Ω

u(x) + A ω
−α

n
n diam(Ω) |∂c(−u)(C∗(−u))|

α
n .

(b) If u ∈ C2(Ω)∩C(Ω) and in addition c satisfies (H2) with c∗ ∈ C2(Rn),

then

max
Ω

u(x) ≤ max
∂Ω

u(x)+A ω
−α

n
n diam(Ω)

(∫
C∗(−u)

| det(I −D2c∗(Du)D2u)|dx
)α

n

.

Proof: (a) Let M = max∂Ω u(x) and x0 ∈ Ω be such that u(x0) > M . For

any z ∈ Ω̄ and y ∈ Rn, we have from the convexity of c and the assumptions

that

c(z − y)− c(x0 − y) + u(x0)−M ≥ Dc(x0 − y) · (z − x0) + u(x0)−M

≥ −A|x0 − y|α|z − x0|+ u(x0)−M ≥ −A diam(Ω)|x0 − y|α + u(x0)−M.

So if y ∈ B(x0, R) where R =

(
u(x0)−M

A diam(Ω)

) 1
α

, then we get

c(z − y)− c(x0 − y) + u(x0)−M > 0 ∀z ∈ Ω̄.

That is, B(x0, R) ⊂ Ω(x0, u(x0) −M). Therefore, by Lemma 4.1 and (4.11)

we obtain

ωnR
n = |B(x0, R)| ≤ |Ω(x0, u(x0)−M)| ≤ |∂c(−u)(C∗(−u))|

or u(x0)−M ≤ A w
−α

n
n diam(Ω)|∂c(−u)(C∗(−u))|

α
n . This completes the proof

of part (a).

(b) This follows from (a) and the first part of Proposition 2.4. �
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CHAPTER 5

Comparison principles

We begin with the following basic lemma.

Lemma 5.1 Suppose c : Rn → R is a continuous function. Let Ω ⊂ Rn be a

bounded open set and u, v ∈ C(Ω̄). If u = v on ∂Ω and v ≥ u in Ω, then

∂cv(Ω) ⊂ ∂cu(Ω).

Proof: The proof is the same as in [Gut01, Lemma 1.4.1] for the standard

subdifferential but we include it here for convenience.

Let p ∈ ∂cv(Ω). There exists x0 ∈ Ω such that v(x) ≥ v(x0) − c(x − p) +

c(x0 − p) ∀x ∈ Ω. Define

a = sup
x∈Ω̄

{v(x0)− c(x− p) + c(x0 − p)− u(x)}.

Since v(x0) ≥ u(x0) we have a ≥ 0. Also, there exists x1 ∈ Ω̄ such that

a = v(x0)− c(x1 − p) + c(x0 − p)− u(x1) and so

u(x) ≥ v(x0)−c(x−p)+c(x0−p)−a = u(x1)−c(x−p)+c(x1−p) ∀x ∈ Ω.

Moreover,

v(x1) ≥ v(x0)− c(x1 − p) + c(x0 − p) = u(x1) + a.

Hence, if a > 0, then x1 ∈ Ω and we get p ∈ ∂cu(x1) ⊂ ∂cu(Ω). If a = 0 then

u(x) ≥ v(x0)− c(x− p) + c(x0 − p) ≥ u(x0)− c(x− p) + c(x0 − p) ∀x ∈ Ω,
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and consequently we obtain p ∈ ∂cu(x0) ⊂ ∂cu(Ω). This completes the proof.

�

We next have the following result which gives a stronger conclusion than

Lemma 5.1.

Lemma 5.2 Suppose c : Rn → R is a locally Lipschitz continuous function.

Let Ω ⊂ Rn be a bounded open set and u, v ∈ C(Ω). Suppose that the set

G := {x ∈ Ω : v(x) > u(x)} satisfies G ⊂ Ω. Then ∂cv(G) ⊂ Int(∂cu(G)).

Proof: If p ∈ ∂cv(G), then there exists x0 ∈ G such that v(x) ≥ v(x0) −
c(x − p) + c(x0 − p) for all x ∈ Ω. Let ε = v(x0) − u(x0) > 0 and consider

the hypersurface of the form v(x0)− c(x− q) + c(x0 − q)− ε

2
, where q will be

chosen in a moment. Fix a ball B sufficiently large such that x− z ∈ B for all

(x, z) ∈ Ω×B(p, 1). Choose Mε =
ε

4‖c‖Lip(B) + ε
. Then for any q ∈ B(p,Mε)

we have

v(x0)− c(x− q) + c(x0 − q)− ε

2
(5.1)

= v(x0)− c(x− p) + c(x0 − p) + [c(x− p)− c(x− q)]

+ [c(x0 − q)− c(x0 − p)]− ε

2

≤ v(x) + 2‖c‖Lip(B)|p− q| − ε

2
≤ v(x) ∀x ∈ Ω.

We shall show that B(p,Mε) ⊂ ∂cu(G). Indeed, for any q ∈ B(p,Mε) let

a = sup
x∈Ḡ

{v(x0)− c(x− q) + c(x0 − q)− ε

2
− u(x)}.

Since v(x0)− u(x0) = ε, we get a > 0. Also observe that if x is in Ω \ Ḡ, then

v(x) ≤ u(x) and so by combining with (5.1) we get

v(x0)− c(x− q) + c(x0 − q)− ε

2
− u(x)

≤ v(x0)− c(x− q) + c(x0 − q)− ε

2
− v(x) ≤ 0 < a.

So in fact a = supx∈Ω {v(x0)− c(x− q) + c(x0 − q)− ε
2
− u(x)}. Now by the

definition of a there exists x1 ∈ Ḡ such that a = v(x0) − c(x1 − q) + c(x0 −
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q)− ε

2
− u(x1) and hence by the above observation we have

v(x0)−c(x1−q)+c(x0−q)−
ε

2
−u(x1) ≥ v(x0)−c(x−q)+c(x0−q)−

ε

2
−u(x)

for all x ∈ Ω, or equivalently,

u(x) ≥ u(x1)− c(x− q) + c(x1 − q) ∀x ∈ Ω. (5.2)

On the other hand, applying (5.1) at x = x1 yields

v(x1) ≥ v(x0)− c(x1 − q) + c(x0 − q)− ε

2
= u(x1) + a > u(x1).

Therefore, x1 ∈ G and hence from (5.2) we get q ∈ ∂cu(x1) ⊂ ∂cu(G), i.e.,

B(p,Mε) ⊂ ∂cu(G). This completes the proof of the lemma. �

We recall a lemma from [GM96] adapted to the case of the c-subdifferential.

Lemma 5.3 (Lemma 4.3 from [GM96]) Suppose c satisfies (H3). Let Ω ⊂
Rn be an open set and u, v ∈ C(Ω). Assume that G = {x ∈ Ω : v(x) > u(x)}
is bounded, and X = {x ∈ Ω : ∂cu(x) ∩ ∂cv(G) 6= ∅} is nonempty. If p ∈ Ω,

u(p) = v(p), ∂cu(p) ∩ ∂cv(p) = ∅, then dist(p,X) > 0.

Proof: Suppose dist(p,X) = 0. Then there exist xn ∈ X such that xn → p.

Then there exist zn ∈ G and yn such that yn ∈ ∂cu(xn)∩∂cv(zn). Since p ∈ Ω,

it follows from Lemma 2.3 that ∂cu(∪n{xn}) is bounded. So passing through

a subsequence, we may assume that zn → z0 and yn → y0. Since yn ∈ ∂cu(xn),
we have u(z) ≥ u(xn)− c(z − yn) + c(xn − yn) for all z ∈ Ω. Letting n → ∞
yields y0 ∈ ∂cu(p), and from the hypotheses y0 6∈ ∂cv(p). So there exists t ∈ Ω

such that

v(t) < v(p)− c(t− y0) + c(p− y0). (5.3)

On the other hand, since yn ∈ ∂cv(zn), we have

v(t) ≥ v(zn)− c(t− yn) + c(zn − yn)

≥ u(zn)− c(t− yn) + c(zn − yn), since zn ∈ G

≥ u(p)− c(zn − y0) + c(p− y0)− c(t− yn) + c(zn − yn), since y0 ∈ ∂cu(p).
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Letting n→∞ we get v(t) ≥ u(p)− c(t− y0) + c(p− y0) = v(p)− c(t− y0) +

c(p− y0) contradicting (5.3). �

We now consider conditions which force ωc(g, u)(G) > ωc(g, v)(G). This

will be used to prove the comparison principle Theorem 5.1.

Lemma 5.4 Suppose c satisfies (H2) and g is positive a.e. and locally inte-

grable in Rn. Let Ω ⊂ Rn be a bounded open set and G = {x ∈ Ω : v(x) > u(x)}
where u, v ∈ C(Ω). Suppose that G 6= ∅, G ⊂ Ω and ∂cu(x0) ∩ ∂cv(x0) = ∅ for

some x0 ∈ ∂G. Assume further that x0 ∈ Int(spt(ωc(g, u))). Then we have

ωc(g, u)(G) > ωc(g, v)(G).

Proof: Let X = {x ∈ Ω : ∂cu(x) ∩ ∂cv(G) 6= ∅}. Then if X 6= ∅ we

have from Lemma 5.3 that dist(x0, X) > 0. Therefore, there exists r > 0

such that B(x0, r) ⊂ Ω and ∂cu(B(x0, r))∩ ∂cv(G) = ∅, in particular, ∂cu(G∩
B(x0, r)) ∩ ∂cv(G) = ∅. This obviously holds if X = ∅. From Lemma 5.2,

∂cv(G) ⊂ ∂cu(G). Thus we must have ∂cv(G) ⊂ ∂cu(G \ B(x0, r)). Since

x0 ∈ Int(spt(ωc(g, u))), there exists r > 0 small enough such that B(x0, r) ⊂
spt(ωc(g, u)). As x0 ∈ ∂G, we then get that ∅ 6= G ∩ B(x0, r) ⊂ spt(ωc(g, u)).

We therefore obtain

ωc(g, u)(G) = ωc(g, u)(G \B(x0, r)) + ωc(g, u)(G ∩B(x0, r))

≥ ωc(g, v)(G) + ωc(g, u)(G ∩B(x0, r)) > ωc(g, v)(G).

This completes the proof. �

By using Lemma 5.4 we are able to prove the following comparison prin-

ciple, which in particular gives the uniqueness of solutions for the Dirichlet

problems considered in the next section. In the following theorem we denote

S := spt(ωc(u)) \ Int(spt(ωc(u))).

Theorem 5.1 Suppose c satisfies (H2). Let g be positive a.e. and locally

integrable in Rn, Ω ⊂ Rn be a bounded open set, u, v ∈ C(Ω̄) be c-convex in

Ω, and

ωc(g, u)(E) ≤ ωc(g, v)(E) for all Borel sets E ⊂ Ω. (5.4)
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Assume that

for every open set D b Ω with |∂cv(D \ spt(ωc(u)))| = 0, there exists (5.5)

a closed set F ⊂ ∂cv(S ∩D) such that |∂cv(S ∩D) \ F | = 0.

Then we have

min
Ω̄
{u(x)− v(x)} = min

∂Ω
{u(x)− v(x)}.

Proof: For simplicity we shall present the proof when g ≡ 1, i.e., when

ωc(g, u) and ωc(g, v) are replaced by ωc(u) and ωc(v) respectively. However, it

can be readily checked that the same argument works for general g as well. For

this general case, one only need to note that by our assumptions on the function

g we have spt(ωc(g, u)) = spt(ωc(u)) and if E,F ⊂ Rn are two measurable sets

with E ⊂ F and
∫
E
g <∞, then

∫
E
g =

∫
F
g if and only if |E| = |F |.

By adding a constant to v if necessary, we can assume without loss of gen-

erality that min∂Ω {u(x)− v(x)} = 0. We shall prove that u(x) ≥ v(x) ∀x ∈
Ω̄. Indeed, suppose not, then there exists x̄ ∈ Ω such that v(x̄) − u(x̄) =

maxΩ̄ [v(x)− u(x)] > 0. Let δ̄ = [v(x̄)−u(x̄)] > 0. For every 0 < δ < δ̄, define

wδ(x) := v(x)− δ in Ω and

Dδ := {x ∈ Ω : wδ(x) > u(x)} = {x ∈ Ω : wδ(x) > u(x)}.1

We have x̄ ∈ Dδ, and wδ(x) = v(x) − δ ≤ u(x) − δ < u(x) for x ∈ ∂Ω.

Hence Dδ ⊂ Ω and ∂Dδ = {x ∈ Ω : wδ(x) = u(x)}. Applying Lemma 5.2 we

obtain ∂cv(Dδ) = ∂cwδ(Dδ) ⊂ Int(∂cu(Dδ)). It follows that ωc(u)(Dδ) > 0 and

therefore

spt(ωc(u)) ∩Dδ 6= ∅, for 0 < δ < δ̄. (5.6)

Denote V = Int(spt(ωc(u))) and fix a δ ∈ (0, δ̄). We then consider the

following cases.

Case 1: V ∩Dδ = ∅.
1If δ1 < δ2, then Dδ2 ⊂ Int(Dδ1).
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Since spt(ωc(u)) = S∪V̄ , from (5.6) we get that S∩Dδ = spt(ωc(u))∩Dδ 6=
∅, and so

|∂cv(Dδ)| ≤ |∂cu(Dδ)| = ωc(u)(spt(ωc(u)) ∩Dδ)

= ωc(u)(S ∩Dδ) ≤ |∂cv(S ∩Dδ)| ≤ |∂cv(Dδ)|.

Therefore |∂cv(Dδ \ spt(ωc(u))| = 0. Thus, from (5.5) there exists Fδ closed,

Fδ ⊂ ∂cv(S ∩Dδ) with |∂cv(S ∩Dδ) \ Fδ| = 0. So

|∂cv(Dδ)| = |∂cv(S ∩Dδ)| = |Fδ|. (5.7)

In addition, Fδ ⊂ ∂cv(Dδ), so it follows from Lemma 2.3 that Fδ is a compact

set. Moreover, Fδ ⊂ ∂cv(Dδ) ⊂ Int(∂cu(Dδ)). Therefore, we obtain

|Fδ| < |∂cu(Dδ)|. (5.8)

From (5.7) and (5.8) we deduce that |∂cv(Dδ)| < |∂cu(Dδ)| and this gives a

contradiction.

Case 2: V ∩Dδ 6= ∅.
Since Dδ is open, V ∩Dδ 6= ∅. We then decompose the nonempty open set

V into the union of its disjoint connected open components V1∪V2∪...∪Vk∪....
Note that the number of connected components of V is at most countable.

Case 2 A: there exists a connected component Vj of V such that Vj∩Dδ 6= ∅
and Vj ∩Dc

δ 6= ∅.
This implies that Vj ∩ Dδ 6= ∅ and Vj ∩ Dc

δ 6= ∅. But as Vj is connected,

then we can find a connected open component, say O, of the nonempty open

set Vj ∩Dδ such that O ∩ ∂Dδ 6= ∅. Now let

Õ = {x ∈ O | u and v are differentiable at x}.

Since u and v are differentiable a.e. on Ω we get Õ = O a.e. Now if

∂cwδ(x) ⊂ ∂cu(x) for all x ∈ Õ, then we have x − ∇c∗(−∇wδ(x)) = x −
∇c∗(−∇u(x)) ∀x ∈ Õ. Therefore we obtain ∇u(x) = ∇wδ(x) for a.e. x ∈ O.

It follows that u− wδ is constant on O, and hence constant on O by the con-

tinuity. By using the fact that u = wδ on ∂Dδ and O ∩ ∂Dδ 6= ∅ we then get
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u = wδ on O. Since O is nonempty and O ⊂ Dδ, this contradicts the definition

of Dδ. Thus we must have ∂cwδ(x0) ∩ ∂cu(x0) = ∅ for some x0 ∈ Õ. We first

claim that 0 < wδ(x0)− u(x0) < maxΩ[wδ(x)− u(x)] = maxDδ
[wδ(x)− u(x)].

Indeed, we only need to show the second inequality. Suppose by contradiction

that it is false, then by letting p = ∂cwδ(x0) we have for every x ∈ Ω

u(x0)− c(x− p) + c(x0 − p) = wδ(x0)− c(x− p) + c(x0 − p)− [wδ(x0)− u(x0)]

≤ wδ(x)−max
Ω

[wδ(x
′)− u(x′)] ≤ wδ(x)− [wδ(x)− u(x)] = u(x),

so p = ∂cu(x0), a contradiction. This proves the claim. Now define w∗δ(x) =

wδ(x) − [wδ(x0) − u(x0)] in Ω and let G := {x ∈ Ω : w∗δ(x) > u(x)} ⊂ Dδ.

Then we get G is nonempty by the claim. Moreover it is clear that G is

open, G ⊂ Ω and ∂G = {x ∈ Ω : w∗δ(x) = u(x)}. We also have w∗δ(x0) =

wδ(x0)−[wδ(x0)−u(x0)] = u(x0). Therefore, x0 ∈ ∂G and by applying Lemma

5.4 and noting that x0 ∈ Int(spt(ωc(u))) we obtain that |∂cu(G)| > |∂cv(G)|,
a contradiction.

Case 2 B: otherwise we have that each Vi is either contained in Dδ or

contained in Dc
δ. Define two open sets V ∗

δ and V ∗∗
δ as follows

V ∗
δ := ∪Vi⊂Dδ

Vi ⊂ Dδ and V ∗∗
δ := ∪Vi⊂Dc

δ
Vi ⊂ Dc

δ.

Then we have V = V ∗
δ ∪ V ∗∗

δ , V ∗
δ ∩ V ∗∗

δ = ∅, V = V ∗
δ ∪ V ∗∗

δ . Also V ∗
δ 6= ∅,

V ∗
δ ⊂ Dδ and V ∗∗

δ ⊂ Dc
δ. Let Ṽ ∗

δ = {x ∈ V ∗
δ | u and v are differentiable at x}.

If we can find a x0 ∈ Ṽ ∗
δ such that ∂cwδ(x0) 6⊂ ∂cu(x0), then by arguing

as in Case 2 A we obtain a contradiction. Therefore, we can assume that

∂cwδ(x) ⊂ ∂cu(x) for all x ∈ Ṽ ∗
δ . But again as in Case 2 A these yield that v−u

is constant on each connected open component of V ∗
δ . We claim that V ∗

δ ⊂ Dδ.

Indeed, since otherwise there exist x̂ ∈ ∂Dδ and a sequence {xn} ⊂ V ∗
δ such

that xn → x̂. Therefore, v(xn) − u(xn) → v(x̂) − u(x̂) = δ. Since 0 < δ < δ̄

and v(x) − u(x) > δ for all x ∈ Dδ, we can pick a n0 large enough such that

δ < v(xn0) − u(xn0) < δ̄. Define δ̂ := v(xn0) − u(xn0), then δ̂ ∈ (0, δ̄). As

xn0 ∈ V ∗
δ , xn0 must belong to some connected open component Vj of V ∗

δ . But

since v − u is constant on Vj, we then deduce that v(x) − u(x) = δ̂ for all
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x ∈ Vj. However, this implies that Vj ⊂ ∂Dδ̂, which is impossible because Vj

is a nonempty open set. This yields a contradiction and the claim is proved.

Now as V ∗∗
δ ⊂ Dc

δ and by the claim, we have

spt(ωc(u)) ∩Dδ = (V ∗
δ ∪ V ∗∗

δ ∪ S) ∩Dδ = V ∗
δ ∪ (S ∩Dδ).

So we obtain

|∂cv(Dδ)| ≤ |∂cu(Dδ)| = ωc(u)(spt(ωc(u)) ∩Dδ) = ωc(u)(V ∗
δ ∪ (S ∩Dδ))

≤ |∂cv(V ∗
δ ∪ (S ∩Dδ))| = |∂cv(V ∗

δ ) ∪ ∂cv(S ∩Dδ)| ≤ |∂cv(Dδ)|.

Thus

|∂cv(Dδ)| = |∂cv(V ∗
δ ) ∪ ∂cv(S ∩Dδ)| = |∂cv(V ∗

δ ) ∪ Fδ|. (5.9)

We have that Fδ is compact since Fδ is closed and Fδ ⊂ ∂cv(S ∩ Dδ) ⊂
∂cv(Dδ), where the last set is bounded by Lemma 2.3. Also ∂cv(V ∗

δ ) is compact.

Moreover, ∂cv(V ∗
δ ) ∪ Fδ ⊂ ∂cv(Dδ) ⊂ Int(∂cu(Dδ)). Therefore, we get

|∂cv(V ∗
δ ) ∪ Fδ| < |∂cu(Dδ)|. (5.10)

From (5.9) and (5.10) we deduce |∂cv(Dδ)| < |∂cu(Dδ)| obtaining a contradic-

tion. The proof is completed. �

Remark 5.1 (On condition (5.5)) We remark that condition (5.5) is satis-

fied if any of the following conditions holds.

1. For each D b Ω open, the set S ∩D is closed.

2. If stp(ωc(u)) = V̄ with V open subset of Ω. In this case we have S = ∅.

3. If spt(ωc(u)) is convex with nonempty interior, then we also have S = ∅.

4. If spt(ωc(u)) is a finite set, then it follows from Lemma 2.4(i) that (5.5)

holds.
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CHAPTER 6

Dirichlet Problems

6.1 Homogeneous Dirichlet Problem

Definition 6.1 A bounded set Ω ⊂ Rn is called strictly convex if for any

z ∈ ∂Ω, there exists a supporting hyperplane H of Ω such that H ∩ Ω = {z}.

Definition 6.2 Let c : Rn → R be a continuous function. A bounded set

Ω ⊂ Rn is called strictly c-convex if for any z ∈ ∂Ω, any δ > 0 and any a > 0,

there exist y, y∗ ∈ Rn such that

c(x− y)− c(z− y) ≥ 0 ∀x ∈ ∂Ω, and c(x− y)− c(z− y) ≥ a ∀x ∈ Ω̄ \B(z, δ)

(6.1)

and

c(z−y∗)−c(x−y∗) ≥ 0 ∀x ∈ ∂Ω, and c(z−y∗)−c(x−y∗) ≥ a ∀x ∈ ∂Ω \B(z, δ).

(6.2)

To illustrate this definition we give several remarks.

Remark 6.1 If c(x) = φ(|x|) with φ : [0,∞) → R continuous and strictly

increasing,, then (6.1) implies that Ω satisfies the exterior sphere condition,

that is, for every z ∈ ∂Ω, there exists an open ball B satisfying B̄ ∩ Ω̄ = {z}.
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Proof: Let z ∈ ∂Ω. We claim that we can find a y ∈ Rn \ Ω̄ such that

|x− y| ≥ |z − y|, for all x ∈ Ω̄. (6.3)

If we assume the claim for the moment, then we see that B(y, |z− y|)∩ Ω̄ = ∅
and z ∈ B(y, |z−y|)∩ Ω̄. Therefore, if we let ȳ be the midpoint of the segment

yz and B be the open ball centered at ȳ and with radius |z − y|/2, then it is

clear that B̄ ∩ Ω̄ = {z} as desired.

It remains to prove the claim. Let a be such that

a > max
x,ỹ∈Ω̄

[c(x− ỹ)− c(z − ỹ)]

and let δ = diam(Ω)/2. Then by (6.1) there exists y ∈ Rn such that

c(x− y)− c(z − y) ≥ 0, for all x ∈ ∂Ω, (6.4)

and

c(x− y)− c(z − y) ≥ a, for all x ∈ Ω̄ \B
(
z,

diam(Ω)

2

)
. (6.5)

From (6.5) and the choice of a, we must have y 6∈ Ω̄. Then if x ∈ Ω, let x̄ be

a point on the segment xy and on ∂Ω. From the form of c and (6.4) we have,

c(x− y) ≥ c(x̄− y) ≥ c(z − y) and we are done. �

Remark 6.2 If c(x) = φ(|x|) is convex with φ : [0,∞) → R continuous and

strictly increasing, and the open set Ω verifies the first inequality in (6.2), then

Ω satisfies the enclosing sphere condition, that is, for each z ∈ ∂Ω there exists

a ball BR ⊃ Ω with z ∈ ∂BR,.

Proof: We first see that the first inequality in (6.2) holds in Ω. Because if

x ∈ Ω, then there exist two points x1, x2 ∈ ∂Ω such that x = tx1 + (1 − t)x2

for some 0 < t < 1. Hence

c(x− y∗) = c(t(x1 − y∗) + (1− t)(x2 − y∗)) ≤ tc(x1 − y∗) + (1− t)c(x2 − y∗)

≤ tc(z − y∗) + (1− t)c(z − y∗) = c(z − y∗).
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Therefore

Ω ⊂ {x : φ(|x− y∗|) ≤ φ(|z − y∗|)} = {x : |x− y∗| ≤ |z − y∗|} = B|z−y∗|(y
∗),

that is, Ω satisfies the enclosing sphere condition and in particular, Ω is strictly

convex. �

Remark 6.3 If c : Rn → R is convex and lim|x|→∞
c(x)

|x|
= +∞, and Ω is

strictly convex, then (6.1) holds.

Proof: Let z ∈ ∂Ω, δ > 0, a > 0, and P (x) = 0 be the equation of the

supporting hyperplane to Ω at z. We can assume Ω̄ ⊂ {x : P (x) ≥ 0}. Since Ω

is strictly convex, there exists η > 0 such that {x ∈ Ω̄ : P (x) ≤ η} ⊂ B(z, δ).

That is, P (x) ≥ η for all x ∈ Ω̄ \ B(x, δ). We can write P (x) = A · (x − z)

with A ∈ Rn. Since ∂c(Rn) = Rn (∂c means the standard subdifferential of c),

we get that a
η
A ∈ ∂c(w) for some w ∈ Rn. If y = z − w, then a

η
A ∈ ∂c(z − y)

and hence

c(x− y)− c(z − y) ≥ a

η
A · (x− z) =

a

η
P (x) ≥ 0

for all x ∈ Ω̄, and

c(x− y)− c(z − y) ≥ a

η
A · (x− z) =

a

η
P (x) ≥ a

η
η = a

for all x ∈ Ω̄ \B(z, δ). �

Remark 6.4 Let c : Rn → R be a convex function such that c(x) = φ(|x|)
for some nondecreasing function φ : [0,∞) → R satisfying φ ∈ C1(m,∞) for

some m ≥ 0 and limt→+∞ φ′(t) = +∞. If Ω ⊂ Rn is a bounded open set

satisfying the enclosing sphere condition, then Ω is strictly c-convex.

Proof: In view of Remark 6.3, we only need to verify (6.2). We may assume

m = 0 because we will see that we can pick y∗ below as far as we want from

Ω. Let z ∈ ∂Ω, δ > 0, a > 0, and BR(z0) be an enclosing ball for z. If H is

the supporting hyperplane to the ball BR(z0) at z, then H ∩ Ω = {z}. Let

H− denote the halfspace containing Ω and let H+ denote the complementary
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halfspace. Consider the line passing through z and orthogonal to H. Let L

and L
′
be the rays starting from z and lying in H+ and H− respectively. We

have that z0 ∈ L′.
Let L′z0 = {y ∈ L′ : |y − z| ≥ R}. If y ∈ L′z0 , then Ω ⊂ B(y, |y − z|) and

hence c(z− y)− c(x− y) ≥ 0 for all x ∈ ∂Ω. Therefore, (6.2) will be proved if

we can show that there exists y∗ ∈ L′
z0

such that c(z − y∗)− c(x− y∗) ≥ a for

all x ∈ ∂Ω \B(z, δ). From the strict convexity of Ω, there exists β > 0 such

that

x− y

|x− y|
· z − x

|z − x|
≥ β, ∀x ∈ ∂Ω\B(z, δ), and ∀y ∈ L′z0 with |y − z| large.

Again from the convexity of c we then get

c(z − y)− c(x− y) ≥ Dc(x− y) · (z − x) = φ′(|x− y|) |z − x| x− y

|x− y|
· z − x

|z − x|

≥ φ′(|x− y|) β δ,

for all x ∈ ∂Ω\B(z, δ) and all y ∈ L′z0 with |y−z| large. Since limt→+∞ φ′(t) =

+∞, (6.2) follows picking y = y∗ ∈ L′z0 sufficiently far from z. This completes

the proof. �

Under the assumption that the domain is strictly c-convex we solve the

homogeneous Dirichlet problem as follows.

Theorem 6.1 Suppose that c satisfies condition (H1) and lim|x|→+∞
c(x)

|x|
=

+∞. Let Ω ⊂ Rn be a strictly c-convex open set and ψ : ∂Ω → R be a

continuous function. Then there exists a unique c-convex function u ∈ C(Ω̄)

Aleksandrov generalized solution to the problem

det[I +D2c∗(−Du(x))D2u(x)] = 0 in Ω,

u = ψ on ∂Ω.

Proof: Define

F := {f(x) = −c(x− y)− λ : y ∈ Rn, λ ∈ R and f(x) ≤ ψ(x) on ∂Ω}.



49

Then since ψ is continuous on ∂Ω we have that F is nonempty. Let

u(x) = sup {f(x) : f ∈ F}. (6.6)

Claim 1: u = ψ on ∂Ω.

It is clear from the definition of u that u ≤ ψ on ∂Ω. Now let z ∈ ∂Ω,

and ε > 0. Then we can find δ > 0 such that |ψ(x) − ψ(z)| < ε for all x ∈
B(z, δ)∩∂Ω. Choose a = ψ(z)−ε−m wherem = min {ψ(x)|x ∈ ∂Ω \B(z, δ)}.
Since Ω is c-strictly convex, there exists y ∈ Rn such that c(x−y)− c(z−y) ≥
0 ∀x ∈ ∂Ω and c(x− y)− c(z − y) ≥ a ∀x ∈ ∂Ω \B(z, δ).

Let f(x) := −[c(x− y)− c(z− y)] +ψ(z)− ε. We claim that f ≤ ψ on ∂Ω.

Indeed, if x ∈ B(z, δ) ∩ ∂Ω, then f(x) = −[c(x − y)− c(z − y)] + ψ(z)− ε ≤
ψ(z) − ε ≤ ψ(x). On the other hand, if x ∈ ∂Ω \B(z, δ), then we have

c(x− y)− c(z − y) ≥ a and hence

f(x) = −[c(x−y)−c(z−y)]+ψ(z)−ε ≤ −[ψ(z)−ε−m]+ψ(z)−ε = m ≤ ψ(x).

Therefore f ∈ F . Thus, u(z) ≥ f(z) = ψ(z) − ε for all ε > 0. Hence,

u(z) ≥ ψ(z) and this proves Claim 1.

Claim 2: u is c-convex and u ∈ C(Ω).

From the definition it is clear that u is uniformly bounded from below on

Ω̄. Now let g(x) := −c(x) + max∂Ω [ψ + c]. It is clear that g ≥ ψ on ∂Ω, g is

c-convex and as c ∈ C1(Rn) we have ∂cg(Ω) = {0} and so |∂cg(Ω)| = 0. Hence

for each f(x) = −c(x − y) − λ ∈ F , it follows from the comparison principle

Theorem 5.1 that f ≤ g in Ω and therefore u is uniformly bounded from above

on Ω̄. Thus, we get u is uniformly bounded on Ω̄. Particularly, this implies

that u is c-convex and moreover from Remark 2.5 we obtain u ∈ C(Ω).

Claim 3: u is continuous up to the boundary.

Let z ∈ ∂Ω and {xn} ⊂ Ω be a sequence such that xn → z. For any ε > 0,

we can find δ > 0 such that |ψ(x)−ψ(z)| < ε for all x ∈ B(z, δ)∩ ∂Ω. Choose

b = M−ψ(z)−ε whereM = max {ψ(x)|x ∈ ∂Ω \B(z, δ)}. Since Ω is c-strictly

convex, there exists y∗ ∈ Rn such that c(z − y∗)− c(x− y∗) ≥ 0 ∀x ∈ ∂Ω

and c(z − y∗)− c(x− y∗) ≥ b ∀x ∈ ∂Ω \B(z, δ).
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Let h(x) := c(z − y∗) − c(x − y∗) + ψ(z) + ε. For x ∈ B(z, δ) ∩ ∂Ω we

have h(x) ≥ ψ(z) + ε > ψ(x), and for x ∈ ∂Ω \B(z, δ) we have h(x) ≥
b + ψ(z) + ε ≥ ψ(x). Therefore, we get h(x) ≥ ψ(x) on ∂Ω. Moreover, h

is c-convex, ∂ch(Ω) = {y∗}, so |∂ch(Ω)| = 0. Thus for any f(x) = −c(x −
y) − λ ∈ F , as in Claim 2 we obtain f ≤ h in Ω. Hence u(x) ≤ h(x) =

c(z− y∗)− c(x− y∗) +ψ(z) + ε in Ω. This yields lim supu(xn) ≤ ψ(z) + ε and

hence lim supu(xn) ≤ ψ(z) since ε > 0 was chosen arbitrary. On the other

hand, for any ε > 0, by constructing a function f ∈ F as in Claim 1 we get

u(xn) ≥ f(xn) = −[c(xn−y)−c(z−y)]+ψ(z)−ε. So lim inf u(xn) ≥ ψ(z)−ε for

any ε > 0 and hence lim inf u(xn) ≥ ψ(z). Thus limn→+∞ u(xn) = ψ(z) = u(z)

and we obtain u ∈ C(Ω̄).

Claim 4: |∂cu(Ω)| = 0.

Let p ∈ ∂cu(Ω). Then there exists x0 ∈ Ω such that

u(x) ≥ u(x0)− c(x− p) + c(x0 − p) ∀x ∈ Ω.

Therefore if we let f(x) := u(x0)− c(x−p)+ c(x0−p), then since u(x) = ψ(x)

on ∂Ω we get f(x) ≤ ψ(x) on ∂Ω. We now claim that in fact there is ζ ∈ ∂Ω

satisfying f(ζ) = ψ(ζ). Indeed, since otherwise there exists ε > 0 such that

f+ε ≤ ψ on ∂Ω. Then the function f(x)+ε ∈ F and hence u(x) ≥ f(x)+ε for

all x ∈ Ω. In particular, u(x0) ≥ f(x0)+ε = u(x0)+ε. This is a contradiction.

So f(ζ) = ψ(ζ) = u(ζ) for some ζ ∈ ∂Ω. But then we get

u(x) ≥ u(x0)− c(x− p) + c(x0 − p)

= u(x0)− c(ζ − p) + c(x0 − p)− c(x− p) + c(ζ − p)

= f(ζ)− c(x− p) + c(ζ − p) = u(ζ)− c(x− p) + c(ζ − p) ∀x ∈ Ω

So p ∈ ∂c(u,Ω)(x0) ∩ ∂c(u,Ω)(ζ), i.e., p ∈ S̃ where S̃ is defined as in Lemma

2.2. That is ∂cu(Ω) ⊂ S̃ and the claim follows from Lemma 2.2.

Thus we have shown the existence of a generalized c-convex solution. The

uniqueness follows from the comparison principle Theorem 5.1 and this com-

pletes the proof. �



51

Remark 6.5 In case c(x) = 1
p
|x|p, with 1 < p < ∞, then the conclusions of

Theorem 6.1 and Lemma 6.1 hold when Ω satisfies only condition (6.1), in

particular, this is satisfied when Ω is strictly convex by Remark 6.3. And con-

sequently, for power cost functions Theorem 6.2, Theorem 6.3 and Corollary

6.1 below are also true when the domain Ω satisfies only condition (6.1).

Proof: We notice that condition (6.2) is only used in Claim 3 to prove

that for any z ∈ ∂Ω and any ε > 0 we have lim supx→z,x∈Ω u(x) ≤ ψ(z) + ε.

Therefore the remark will be proved if we establish this using only condition

(6.1). In fact, from Remark 6.1, Ω satisfies the exterior sphere condition and

thus Ω is q-regular with q the conjugate of p. From [BR02, Theorem 4.7]

there exists w ∈ W 1,q(Ω) ∩ C(Ω̄) weak solution to the q-Laplacian

−div
(
|Dw(x)|q−2Dw(x)

)
+ n = 0, in Ω and w = −ψ on ∂Ω.

Notice that div (|Dw(x)|q−2Dw(x)) = div (Dc∗ (Dw(x))) . For each f(x) =

−c(x−y)−λ ∈ F , we have−f(x) ≥ −ψ(x) on ∂Ω, and−div (Dc∗ (−Df(x)))+

n = 0. Hence by the comparison principle [BR02, Theorem 3.1] for the q-

Laplacian we get that −f ≥ w in Ω̄, and therefore u(x) = supf∈F f(x) ≤
−w(x) for all x ∈ Ω̄. �

Remark 6.6 When ψ is a constant function, the proof above shows that

Theorem 6.1 holds when Ω satisfies a condition weaker than c-strictly convex,

namely: for any z ∈ ∂Ω, there exist y, y∗ ∈ Rn such that c(x−y)−c(z−y) ≥ 0

and c(z − y∗)− c(x− y∗) ≥ 0 for all x on ∂Ω.

Remark 6.7 Suppose c satisfies condition (H1). Then the argument in the

proof of Claim 2 in fact shows that for any c-convex function u ∈ C(Ω) we

have maxΩ [u+ c] = max∂Ω [u+ c].

6.2 Nonhomogeneous Dirichlet Problem

Throughout this section we assume that g ∈ L1
loc(Rn) and is positive a.e.

We begin with the following lemma.
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Lemma 6.1 Suppose that c satisfies condition (H1), and lim|x|→+∞
c(x)

|x|
=

+∞. Let Ω ⊂ Rn be a strictly c-convex open set, and ψ : ∂Ω → R be a

continuous function. Then for any set E b Ω and for any number α ∈ R, there

exists a c-convex function u ∈ C(Ω) satisfying u = ψ on ∂Ω and u ≤ α on E.

Proof: Define

F = {f(x) = −c(x− y)− λ : y ∈ Rn, λ ∈ R, f ≤ ψ on ∂Ω and f ≤ α on E}.

Since ψ is continuous on ∂Ω we have that F is nonempty. Let

u(x) = sup
f∈F

f(x) for all x ∈ Ω.

The proof now follows as in Theorem 6.1 with some obvious modifications in

Claim 1. �

Theorem 6.2 Suppose that c satisfies condition (H1), lim|x|→∞
c(x)

|x|
= +∞,

and c(0) = minx∈Rn c(x). Let Ω ⊂ Rn be a strictly c-convex open set, ψ ∈
C(∂Ω), distinct points x1, · · · , xN ∈ Ω, and a1, · · · , aN positive numbers. If

a1 + · · ·+ aN <

∫
Rn

g(y) dy, (6.7)

then there exists a unique function u ∈ C(Ω), c-convex solution to the problem

ωc(g, u) =
N∑
i=1

ai δxi
in Ω, (6.8)

u = ψ on ∂Ω.

Proof: Let

H = {v ∈ C(Ω) : v is c-convex in Ω, v|∂Ω = ψ,

ωc(g, v)(Ω) =
N∑
i=1

ωc(g, v)(xi), and

∫
∂cv(xi)

g(y) dy ≤ ai for i = 1, · · · , N}.

From Theorem 6.1, let W be the solution to ωc(g,W ) = 0 and W = ψ on ∂Ω.

We have W ∈ H, and it follows from definition (6.6) that

v ≤ W, for each v ∈ H. (6.9)
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For each v ∈ H define

V [v] =

∫
Ω

[W (x)− v(x)] dx ≥ 0,

and let

β = sup
v∈H

V [v].

We shall prove that there exists u ∈ H such that β = V [u] and u is the desired

solution to the problem (6.8).

Claim 1. There exists L ∈ R such that

L ≤ v in Ω and for all v ∈ H. (6.10)

Proof of claim 1. Applying Theorem 4.1 to −v we get

max
Ω

(−v) ≤ max
∂Ω

(−v) + h−1(ωc(g, v)(Ω)),

where the function h is given in (4.13). Since ωc(g, v)(Ω) ≤ a1 + · · · + aN <

B(g), and h−1 is increasing, we obtain that

min
Ω
v ≥ L := min

∂Ω
ψ − h−1(a1 + · · ·+ aN) > −∞.

Claim 2. There exists a c-convex function w ∈ C(Ω̄) with w = ψ on ∂Ω

and

w(x) ≤ v(x), in Ω̄ and for all v ∈ H.

Proof of Claim 2.

Using Lemma 6.1 we can construct a c-convex function w ∈ C(Ω̄) such

that w = ψ on ∂Ω, and w ≤ L on {x1, · · · , xN}. Next let v ∈ H and define

Gv = {h ∈ C(Ω) : h is c-convex in Ω, h|∂Ω ≤ ψ, h(xi) ≤ v(xi) for i = 1, · · · , N},

and

ṽ(x) = sup
h∈Gv

h(x), x ∈ Ω̄.

Notice that v ∈ Gv, and so v ≤ ṽ. Also v(xi) = ṽ(xi) for 1 ≤ i ≤ N . We claim

that v = ṽ. We have ṽ = v on ∂Ω. So if we prove that ωc(g, v) ≤ ωc(g, ṽ),
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the claim will follow from the comparison principle Theorem 5.1. In order to

show that ωc(g, v) ≤ ωc(g, ṽ), and since the measure ωc(g, v) is concentrated

on {x1, · · · , xN}, it is enough to prove that

∂cv(xi) ⊂ ∂cṽ(xi), i = 1, · · · , N.

If p ∈ ∂cv(xi), then v(x) ≥ v(xi)− c(x− p) + c(xi − p) =: h(x) for all x ∈ Ω̄.

But h ∈ Gv so h ≤ ṽ in Ω̄. Since h(xi) = v(xi) = ṽ(xi), we then get p ∈ ∂cṽ(xi)
as desired. We now notice that from Claim 1, we have that w(xi) ≤ L ≤ v(xi)

for 1 ≤ i ≤ N and so w ∈ Gv, and consequently w ≤ v. This completes the

proof of Claim 2.

Recall that

β = sup
v∈H

V [v],

and from Claim 2, β ≤ V [w] < ∞. Then there exists a sequence {un} ⊂ H
such that V [un] ↑ β as n→∞. From (6.9) and Claim 2 we have that

w(x) ≤ un(x) ≤ W (x), ∀x ∈ Ω̄. (6.11)

Claim 2A. There is a subsequence {unk
} and u ∈ C(Ω̄) with u = ψ on

∂Ω such that unk
→ u locally uniformly in Ω as k → ∞. We denote this

subsequence uk.

From (6.11), {un} is uniformly bounded in Ω̄. Since un is c-convex in Ω,

from Remark 2.2 we know that given K ⊂ Ω compact, un is Lipschitz in K,

say with constant C(K,n). We claim that C(K,n) is uniformly bounded in n.

Indeed, from the hypotheses on c we have that c satisfies condition (H3) and

therefore by Lemma 2.3 there exists R > 0 such that ∂cun(K) ⊂ B(0, R) for

all n = 1, 2, ... Choose the ball B which is large enough such that z − p ∈ B

for all z ∈ K and p ∈ B(0, R). Then for any x, y ∈ K, by choosing p ∈ ∂cun(y)
and since c is convex on Rn we have

un(x)− un(y) ≥ −c(x− p) + c(y − p) ≥ −‖c‖Lip(B)|x− y|.
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Similarly, we also have un(y) − un(x) ≥ −‖c‖Lip(B)|x − y|. Thus |un(x) −
un(y)| ≤ ‖c‖Lip(B)|x − y| for all x, y ∈ K, that is, C(K,n) ≤ ‖c‖Lip(B) for

all n. This proves the claim. Therefore {un} are equicontinuous on K and

uniformly bounded in Ω. From (6.11) and since w = W = ψ on ∂Ω, by

Arzela-Ascoli’s lemma there exists a subsequence {unk
} converging uniformly

on compact subsets of Ω to a function u ∈ C(Ω) satisfying u = ψ on ∂Ω. Also

u is c-convex by Lemma 2.1. This completes the proof of Claim 2A.

Claim 3. u ∈ H, and V [u] = supv∈H V [v].

It is enough to show u ∈ H. We first see that wc(g, uk) → wc(g, u) weakly

in Ω. To prove this we use Lemma 3.1 and so we only have to check that

condition (3.6) holds. Indeed, if zkj
→ z0 ∈ ∂Ω, then from (6.11) we have

lim supukj
(zkj

) ≥ lim supw(zkj
) = w(z0) = ψ(z0)

= limW (zkj
) = lim infW (zkj

) ≥ lim inf u(zkj
).

Second, since the measures wc(g, uk) are concentrated on {x1, · · · , xN}, it fol-

lows from Lemma 3.1 that∫
∂cuk(xi)

g(y) dy = wc(g, uk)({xi}) → wc(g, u)({xi}) =

∫
∂cu(xi)

g(y) dy,

as k →∞ for 1 ≤ i ≤ N . This implies that
∫
∂cu(xi)

g(y) dy ≤ ai for 1 ≤ i ≤ N .

Also the measure ωc(g, u) is concentrated on {x1, · · · , xN} since it is the limit

of measures concentrated on that set. Thus, we get Claim 3.

Claim 4. The function u solves the nonhomogeneous Dirichlet problem

(6.8).

It is enough to show that
∫
∂cu(xi)

g(y) dy = ai for 1 ≤ i ≤ N . Suppose

by contradiction this is not true. Then there exists 1 ≤ i0 ≤ N such that∫
∂cu(xi0

)
g(y) dy < ai0 . By relabelling the indices we may assume that there

exists a number 1 ≤ ` ≤ N such that∫
∂cu(xi)

g(y) dy < ai for 1 ≤ i ≤ ` and∫
∂cu(xi)

g(y) dy = ai for `+ 1 ≤ i ≤ N .
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Given n ∈ N define

Gn = {v ∈ C(Ω) : v is c-convex in Ω, v|∂Ω ≤ ψ, v(xk) ≤ u(xk)−
1

n
for 1 ≤ k ≤ `

and v(xm) ≤ u(xm) for `+ 1 ≤ m ≤ N}.

Since u − 1

n
∈ Gn, we have Gn 6= ∅. Define wn(x) = supv∈Gn

v(x) for x ∈ Ω̄.

We have

wn(xk) = u(xk)−
1

n
for 1 ≤ k ≤ ` and

wn(xm) ≤ u(xm) for `+ 1 ≤ m ≤ N .

We now claim that

∃n0 such that ∀n ≥ n0, wn(xm) = u(xm) for `+ 1 ≤ m ≤ N . (6.12)

Indeed, by definition
∫
∂cu(xm)

g(y) dy = am > 0 for ` + 1 ≤ m ≤ N , and so

|∂cu(xm)| > 0 for `+ 1 ≤ m ≤ N . Hence there exists pm ∈ ∂cu(xm) such that

fm(xk) < u(xk) for 1 ≤ k ≤ `, where fm(x) = u(xm)− c(x− pm)+ c(xm− pm).

Because if on the contrary for each p ∈ ∂cu(xm) there exists xk for some

1 ≤ k ≤ ` and with fm(xk) = u(xk), then p ∈ ∂cu(xk) and so

∂cu(xm) ⊂ {p ∈ Rn : p ∈ ∂cu(x) ∩ ∂cu(y) for some x, y ∈ Ω, x 6= y}.

Hence by Corollary 2.1, it follows that |∂cu(xm)| = 0, a contradiction. There-

fore there exists n0 such that

fm(xk) ≤ u(xk)−
1

n0

for all ` + 1 ≤ m ≤ N and 1 ≤ k ≤ `, and so the last inequality holds for

all n ≥ n0. Hence fm ∈ Gn for ` + 1 ≤ m ≤ N and for all n ≥ n0, and

consequently, wn(xm) ≥ fm(xm) = u(xm) and (6.12) is proved.

Claim 4A. wn ∈ H for sufficiently large n.

Notice that constructing a sufficiently negative c-convex function w(x)

whose values are ψ on ∂Ω as in Claim 2, we have that w ∈ Gn and so wn ∈ C(Ω̄)

with wn = ψ on ∂Ω.
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We first show that the measures ωc(g, wn) are concentrated on {x1, · · ·xN}.
Let B ⊂ Ω be an open ball such that B ∩ {x1, · · ·xN} = ∅. We claim that

|∂cwn(B)| = 0. Let p ∈ ∂cwn(B). Then there exists z ∈ B such that wn(x) ≥
wn(z)− c(x− p) + c(z − p) =: f(x) for all x ∈ Ω̄. We claim that there exists

y ∈ Ω̄ \ B such that f(y) = wn(y). Suppose by contradiction this is not true,

so f(x) < wn(x) for all x ∈ Ω̄ \ B. Then f(x) + ε < wn(x) for all x ∈ Ω̄ \ B
for some ε > 0 sufficiently small. Notice that f(x) + ε is c-convex in Ω and

therefore f + ε ∈ Gn. Hence f(z) + ε ≤ wn(z) = f(z), a contradiction. It then

follows from the claim that p ∈ ∂c(wn, Ω̄)(y) and then

∂cwn(B) ⊂ {p ∈ Rn : p ∈ ∂c(wn, Ω̄)(x)∩∂c(wn, Ω̄)(y) for some x, y ∈ Ω̄, x 6= y}.

From Lemma 2.2 we then conclude that |∂cwn(B)| = 0.

We have

u(x)− 1

n
≤ wn(x) ≤ u(x), for x ∈ Ω̄ (6.13)

where the first inequality holds because u − 1

n
∈ Gn and the second holds

because Gn ⊂ Gu. Consequently, − 1

n
≤ wn(x) − u(x) ≤ 0 in Ω̄ so wn → u

uniformly in Ω̄ and therefore wc(g, wn) → wc(g, u) weakly, and since wc(g, wn)

are concentrated on {x1, · · · , xN} we get from Lemma 3.1 that∫
∂cwn(xk)

g(y) dy →
∫
∂cu(xk)

g(y) dy < ak

for 1 ≤ k ≤ `, and so there exists n1 ≥ n0 such that for all n ≥ n1 we get∫
∂cwn(xk)

g(y) dy < ak for 1 ≤ k ≤ `. Now let n ≥ n1, we shall show that

wn ∈ H. Indeed, from (6.12) and (6.13) we have that

∂cwn(xm) ⊂ ∂cu(xm), for `+ 1 ≤ m ≤ N,

and so∫
∂cwn(xm)

g(y) dy ≤
∫
∂cu(xm)

g(y) dy = am, for `+ 1 ≤ m ≤ N.

Thus, Claim 4A is proved.
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Finally, from (6.13) and since u(xk)−wn1(xk) =
1

n1

for 1 ≤ k ≤ ` we then

get that V [wn1 ] =
∫

Ω
[W (x)− wn1(x)] dx = V [u] +

∫
Ω

[u(x)− wn1(x)] dx >

V [u], a contradiction by Claim 4A. This completes the proof of Claim 4 and

hence the theorem is proved since the uniqueness follows from Theorem 5.1.

�

6.3 Nonhomogeneous Dirichlet Problem with

general right hand side

Theorem 6.3 Suppose that c satisfies condition (H1), lim|x|→+∞
c(x)

|x|
= +∞,

c(0) = minx∈Rn c(x), and g ∈ L1
loc(Rn) is positive a.e. Let Ω ⊂ Rn be a strictly

c-convex open set, and ψ ∈ C(∂Ω). Suppose that µ is a Borel measure in Ω

satisfying spt(µ) ⊂ Ω and

µ(Ω) <

∫
Rn

g(y) dy. (6.14)

Then there exists u ∈ C(Ω) that is a c-convex weak solution to the problem

ωc(g, u) = µ in Ω and u = ψ on ∂Ω. Moreover, the solution is unique if in

addition µ satisfies

for every open set D b Ω, S ∩D is a closed set, (6.15)

where S := spt(µ) \ Int(spt(µ)).

Proof: First fix a subdomain Ω′ of Ω such that spt(µ) ⊂ Ω′ b Ω. By

the assumptions we can select a sequence of measures {µj} satisfying µj ⇀ µ

weakly in Ω, each µj is a finite combination of delta masses with spt(µj) ⊂ Ω′

and {µj(Ω)} is uniformly bounded by a positive constant A which is strictly

less than
∫

Rn g(y) dy. Hence for each j, by Theorem 6.2 there exists a unique

c-convex weak solution uj ∈ C(Ω) to the problem ωc(g, uj) = µj in Ω and
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uj = ψ on ∂Ω. Then by using the maximum principle Theorem 4.1, we have

−min
Ω
uj = max

Ω
(−uj) ≤ max

∂Ω
(−uj) + h−1(ωc(g, uj)(Ω))

= −min
∂Ω

ψ + h−1(µj(Ω)) ≤ −min
∂Ω

ψ + h−1(A) =: C < +∞.

That is,

−C ≤ min
Ω
uj

for all j. Moreover, by Lemma 6.1 we can find a c-convex function w ∈ C(Ω)

satisfying w = ψ on ∂Ω and w ≤ −C on Ω′. From Theorem 6.1, let v ∈ C(Ω)

be the unique c-convex weak solution to the problem ωc(v) = 0 in Ω and v = ψ

on ∂Ω. Then we have

w(x) ≤ uj(x) ≤ v(x) ∀x ∈ Ω (6.16)

for every j, where the first inequality is proved using the argument in the proof

of Claim 2, Theorem 6.2, and the second follows from Theorem 5.1. It can

be showed easily that {uj} has a subsequence converging locally uniformly to

some function u in Ω. Then by (6.16) we have w ≤ u ≤ v. Therefore u ∈ C(Ω)

with u = ψ on ∂Ω. Hence by Lemma 2.1 and Corollary 3.1 we obtain that u

is a weak solution to the Dirichlet problem. The uniqueness follows from the

comparison principle Theorem 5.1. �

In the last theorem, the assumption that the measure µ has compact sup-

port in Ω can be substituted by the existence of a c-convex subsolution to the

equation with the given boundary condition. Indeed, we have the following.

Corollary 6.1 Suppose that c satisfies condition (H1), lim|x|→+∞
c(x)

|x|
= +∞,

c(0) = minx∈Rn c(x), and g ∈ L1
loc(Rn) is positive a.e. Let Ω ⊂ Rn be a strictly

c-convex open set, and ψ ∈ C(∂Ω). Suppose that µ is a finite Borel measure

in Ω satisfying (6.15) and there exists a c-convex function w ∈ C(Ω) such that

ωc(g, w) ≥ µ in Ω and w = ψ on ∂Ω. Then there exists a unique u ∈ C(Ω)

that is a c-convex weak solution to the problem ωc(g, u) = µ in Ω and u = ψ

on ∂Ω.
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Proof: Let S = spt(µ) \ Int(spt(µ)) and for each positive integer j denote

Ωj = {x ∈ Ω : dist(x, ∂Ω) > 1/j}. Define

Kj = (Ωj ∩ S) ∪ Ωj ∩ Int(spt(µ))

which is a subset of spt(µ), and µj(E) =
j

j + 1
µ(E ∩Kj) for every Borel set

E ⊂ Ω. Then since µ satisfies condition (6.15) we have Kj is a closed set

and hence spt(µj) = spt(µ|Kj
) = Kj. Moreover, as S does not contain any

interior point and the sets Ωj ∩ S and Ωj ∩ Int(spt(µ)) are disjoint, we get

Int(spt(µj)) = Int(Kj) = Int(Ωj ∩ Int(spt(µ))) = Ωj ∩ Int(spt(µ)). Therefore,

if for each j we let Sj = spt(µj) \ Int(spt(µj)), then we obtain Sj = Ωj ∩ S.

This implies that condition (6.15) is satisfied with S replaced by Sj. We note

also that µj ⇀ µ weakly in Ω since for each compact set K ⊂ Ω we have

µj(K) → µ(K) because

lim
j→∞

µ(K ∩Kj) = lim
j→∞

µ((K ∩ Ωj ∩ S) ∪ (K ∩ Ωj ∩ Int(spt(µ))))

= µ((K ∩ S) ∪ (K ∩ Int(spt(µ)))) = µ(K ∩ spt(µ)) = µ(K).

Now since µj(Ω) ≤ j

j + 1
µ(Ω) and µ(Ω) ≤ ωc(g, w)(Ω) ≤

∫
Rn g, we get µj(Ω) <∫

Rn g as µ is a finite measure. Thus, by Theorem 6.3 for each j there exists

uj ∈ C(Ω) that is a c-convex weak solution to the problem ωc(g, uj) = µj in Ω

and uj = ψ on ∂Ω. Hence as ωc(g, uj) = µj ≤ µ ≤ ωc(g, w) and the measures

µj satisfy condition (6.15), by applying the comparison principle Theorem 5.1

we obtain

w(x) ≤ uj(x) ≤ v(x) ∀x ∈ Ω (6.17)

for every j, where v ∈ C(Ω̄) is the c-convex weak solution to the homogeneous

Dirichlet problem. Then by following the argument in the proof of Theorem

6.3 we get the desired result. �

In general to find a c-convex subsolution is a nontrivial task. However, in

the following by using Bakelman’s result on the existence of a convex weak

solution to the R-curvature problem we shall show that c-convex subsolutions

do exist in a number of important cases. In order to do that we need to recall
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some concepts introduced by Bakelman. Suppose R ∈ L1
loc(Rn) is positive a.e.

on Rn and Ω ⊂ Rn is a bounded open set. For each convex function u on Ω,

define the measure

ω(R, u,E) =

∫
∂u(E)

R(y)dy for all Borel sets E ⊂ Ω,

where ∂u denotes the standard subdifferential. We then have the following

relation which in particular says that when g is bounded from below by a

positive constant c0 then a convex subsolution to the R-curvature problem

with R(y) = c0 detD2c∗(−y) is indeed a c-convex subsolution to our problem.

Lemma 6.2 Suppose c satisfies condition (H2) and c∗ ∈ C2(Rn \ {z0}) for

some z0 in Rn, and g(y) ≥ c0 > 0 for a.e. y. Let R(y) = c0 detD2c∗(−y) a.e.

on Rn and assume that R is positive a.e., and let Ω ⊂ Rn be a bounded open

set. Then for any convex function u ∈ C(Ω), we have

ωc(g, u)(E) ≥ c0|E|+ ω(R, u,E) for all Borel sets E ⊂ Ω.

Proof: Observing that since c∗ is convex, we have R ∈ L1
loc(Rn) (see for

example [McC97, Corollary 4.3]. Also, as ωc(g, u) ≥ c0ωc(u), it is enough

to show the above estimate with the left hand side is ωc(u) and with c0 = 1.

Assume first that u is a convex function satisfying u ∈ C2(Ω) and D2u(x) > 0

in Ω. Let s(x) = x−Dc∗(−Du(x)) for x in Ω. Define Ku = {x ∈ Ω : Du(x) =

−z0}, which is relatively closed in Ω and letB = {x ∈ Ω \Ku : detDs(x) = 0}.
Then by the assumptions we have s ∈ C1(Ω\Ku) and B is relatively closed in

the open set Ω \Ku. Now let E be an arbitrary Borel set in Ω. We claim that

ωc(u)(E \Ku) ≥
∫
E\Ku

| det(I +D2c∗(−Du)D2u)| dx. (6.18)

Indeed, for any open set U with E \Ku ⊂ U ⊂ Ω, let V = U \Ku. Then V is

open and E\Ku ⊂ V ⊂ Ω. Also V \B is open since V \B = V ∩((Ω \Ku) \B).

We can write the open set V \ B as V \ B = ∪∞i=1Ci where {Ci}∞i=1 are cubes

with disjoint interior and sides parallel to the coordinate axes. We can choose
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Ci are small enough so that s : Ci → s(Ci) is a diffeomorphism. We therefore

have∫
E\Ku

| det(I +D2c∗(−Du)D2u)| dx ≤
∫
V

| detDs(x)| dx

=

∫
V \B

| detDs(x)| dx =

∫
∪∞i=1Ci

| detDs(x)| dx =

∫
∪∞i=1

◦
Ci

| detDs(x)| dx

=
∞∑
i=1

∫
◦
Ci

| detDs(x)| dx =
∞∑
i=1

∫
s(

◦
Ci)

dy =
∞∑
i=1

|∂cu(
◦
Ci)| by Proposition 2.3(2)

= ωc(u)(∪∞i=1

◦
Ci) ≤ ωc(u)(V \B) ≤ ωc(u)(U).

Since c satisfies condition (H2), the measure ωc(u) is regular. Hence, we

deduce from the last inequality that (6.18) holds. Next, as ∂u(E ∩ Ku) =

{Du(x) : x ∈ E ∩Ku} ⊂ {−z0} we have |∂u(E ∩Ku)| = 0. Hence,

ω(R, u,E ∩Ku) = 0. (6.19)

We also note that since u is convex and u ∈ C2(Ω) we get from Proposition

2.3(2) that ∂cu(E ∩Ku) = {x−Dc∗(−Du(x)) : x ∈ E ∩Ku} = {x−Dc∗(z0) :

x ∈ E ∩Ku}. Thus,

ωc(u)(E ∩Ku) = |E ∩Ku|. (6.20)

Since D2c∗(y) is symmetric nonnegative definite for every y in Rn − {z0} and

D2u(x) is symmetric positive definite for all x in Ω, we have D2c∗(y)D2u(x)

is diagonalizable with nonnegative eigenvalues for every such x and y. But

then by diagonalizing, it is easy to see that det(I +D2c∗(−Du(x))D2u(x)) ≥
1+det(D2c∗(−Du(x))D2u(x)) for all x in Ω\Ku. Combining this with (6.18),
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(6.19) and (6.20) we obtain

ωc(u)(E) = ωc(u)(E ∩Ku) + ωc(u)(E \Ku)

≥ |E ∩Ku|+
∫
E\Ku

| det(I +D2c∗(−Du)D2u)|dx

≥ |E ∩Ku|+
∫
E\Ku

[1 + detD2c∗(−Du) detD2u] dx

= |E|+
∫
E\Ku

R(Du(x)) detD2u(x) dx = |E|+ ω(R, u,E \Ku)

= |E|+ ω(R, u,E).

So the lemma holds for any convex function u ∈ C2(Ω) satisfying D2u > 0 in

Ω. For the general case, choose a sequence of convex functions {vm} ⊂ C2(Ω)

such that vm → u locally uniformly in Ω. Define um(x) = vm(x)+ 1
m
|x|2. Then

D2um > 0 in Ω for every m and {um} still share the above properties of {vm}.
Hence, by applying the previous result we get ωc(um) ≥ | · | + ω(R, um, .) in

Ω for all m. But as {um} are convex and um → u locally uniformly we have

ωc(um), ω(R, um, .) converge weakly to ωc(u) and ω(R, u, .) respectively (see

Remark 3.2). Therefore, by passing to the limit we get the desired result. �

We will need the following proposition which is a simple extension of Alek-

sandrov maximum principle (see [Gut01, Theorem 1.4.2]). Note that here we

only need u ≥ 0 on ∂Ω instead of u = 0 on ∂Ω as in Aleksandrov’s result.

Proposition 6.1 Suppose R(y) ≥ c1|y|−2k for a.e. y in Rn with k < 1
2
. Let

Ω be a bounded convex open set in Rn, and u ∈ C(Ω) a convex function with

u ≥ 0 on ∂Ω. We have the following:

(i) If k ≤ 0, then

u(x) ≥ −
[

1

c1c(n, k)
diam(Ω)n−2k−1dist(x, ∂Ω)ω(R, u,Ω)

]1/(n−2k)

∀x ∈ Ω.

(ii) If 0 ≤ k < 1
2
, then

u(x) ≥ −
[

1

c1c(n)
diam(Ω)n−1dist(x, ∂Ω)1−2k ω(R, u,Ω)

]1/(n−2k)

∀x ∈ Ω.
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Proof: Let x0 ∈ Ω be such that u(x0) < 0 and let F = {v ∈ C(Ω̄) :

v is convex, v ≤ u on ∂Ω, and v(x0) ≤ u(x0)}. Then F 6= ∅ as u ∈ F . Define

w(x) = sup
v∈F

v(x) for x ∈ Ω̄.

Since Ω is convex, there exists h ∈ C(Ω̄) which is harmonic in Ω and h = u

on ∂Ω. Then by writing w as a supremum of affine functions it is easy to see

that u(x) ≤ w(x) ≤ h(x) in Ω̄, and hence the convex function w is in C(Ω̄)

with w = u on ∂Ω and w(x0) = u(x0). This implies that ∂w(Ω) ⊂ ∂u(Ω) from

[Gut01, Lemma 1.4.1]. On the other hand, by the definitions of subdifferential

and the function w we have

∂w(x0) = {p ∈ Rn : w(x0) + p · (x− x0) ≤ u(x) on ∂Ω}

⊃ {p ∈ Rn : u(x0) + p · (x− x0) ≤ 0 on ∂Ω} = ∂v(x0),

where v is the convex function whose graph is the upside down cone with

vertex (x0, u(x0)) and base Ω, with v = 0 on ∂Ω. Therefore, ∂v(x0) ⊂ ∂u(Ω).

Moreover, by the proof in [Gut01, Theorem 1.4.2] there exists p0 ∈ Rn with

|p0| =
−u(x0)

dist(x0, ∂Ω)
such that the convex hull K of the n-dimensional ball

B
(
0, −u(x0)

diam(Ω)

)
and p0 is contained in ∂v(x0). Consequently,

ω(R, u,Ω) =

∫
∂u(Ω)

R(y) dy ≥ c1

∫
K

|y|−2k dy ≥ c1

∫
H(t,α,β)

|y|−2k dy, (6.21)

where t = −u(x0) > 0, α = dist(x0, ∂Ω), β = diam(Ω), and H(t, α, β) denotes

the convex cone in Rn with vertex at (0, ..., 0, t/α) and with base the ball

B(0, t/β) ⊂ Rn−1, the orthogonal hyperplane to the xn-axis at the origin.

Noticing that in the last inequality above we have used the fact that the

function |y|−2k is radial. If 0 ≤ k < 1
2
, then we have∫

H(t,α,β)

|y|−2k dy ≥
(
t

α

)−2k

|H(t, α, β)| (6.22)

= ωn−2

(
t

α

)−2k ∫ t
α

0

[∫ t−αz
β

0

hn−2 dh

]
dz

=
ωn−2

n− 1

(
t

α

)−2k ∫ t
α

0

(
t− αz

β

)n−1

dz =
ωn−2

n(n− 1)

tn−2k

α1−2kβn−1
.
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If on the other hand k ≤ 0, then∫
H(t,α,β)

|y|−2k dy = ωn−2

∫ t
α

0

[∫ t−αz
β

0

(h2 + z2)−khn−2 dh

]
dz (6.23)

≥ ωn−2

∫ t
α

0

[∫ t−αz
β

t−αz
2β

(h2 + z2)−khn−3h dh

]
dz

≥ ωn−2 min {2n−3, 1}
∫ t

α

0

(
t− αz

2β

)n−3
[∫ t−αz

β

t−αz
2β

(h2 + z2)−kh dh

]
dz

=
c(n)

2

∫ t
α

0

(
t− αz

2β

)n−3
[∫ z2+( t−αz

β
)2

z2+( t−αz
2β

)2
s−k ds

]
dz

=
c(n)

2(1− k)

∫ t
α

0

(
t− αz

2β

)n−3


[
z2 +

(
t− αz

β

)2
]1−k

−

[
z2 +

(
t− αz

2β

)2
]1−k

 dz

≥ c(n)31−k

2(1− k)

∫ t
α

0

(
t− αz

2β

)n−2k−1

dz =
c(n) 31−k

2n−2k(1− k)(n− 2k)

tn−2k

αβn−2k−1
.

From (6.21), (6.22), (6.23) and the definitions of t, α, and β we derive the

desired results. �

We next recall the notion of local parabolic support due to Bakelman which

describes more precisely the geometry of domains which are between being

strictly convex and satisfying the enclosing sphere condition. For a bounded

open convex set Ω ⊂ Rn, let z ∈ ∂Ω. Then there exist a supporting hyperplane

α to Ω̄ at z and an open ball BR(z) such that the convex (n − 1)-surface

∂Ω ∩ BR(z) has a one-to-one orthogonal projection Πα : ∂Ω ∩ BR(z) −→ α.

Moreover, the unit normal ~n to α in the direction of the halfspace where Ω̄ lies

passes through interior points of Ω. Denote by SR(z) the set Πα(∂Ω∩BR(z)).

Let ξ1, ..., ξn−1, ξn be the Cartesian coordinates introduced in the following

way: z is the origin, the axes ξ1, ..., ξn−1 lie in the plane α, and the axis ξn is

directed along the interior normal ~n to ∂Ω at the point z. Clearly, the convex

surface ∂Ω∩BR(z) is the graph of some convex function ϕ(ξ1, ..., ξn−1) defined

on SR(z). Obviously,

ϕ(0, ..., 0) = 0 and ϕ(ξ1, ..., ξn−1) ≥ 0 ∀(ξ1, ..., ξn−1) ∈ SR(z).
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We will say that ∂Ω has a parabolic support of order τ ≥ 0 at the point

z ∈ ∂Ω, if there exists rz ∈ (0, R) and b(z) > 0 such that

ϕ(ξ1, ..., ξn−1) ≥ b(z)(ξ2
1 + ...+ ξ2

n−1)
τ+2
2 ∀(ξ1, ..., ξn−1) ∈ Srz(z),

i.e., the convex (n − 1)-surface ∂Ω ∩ Brz(z) can be touched from outside by

the (n − 1)-dimensional paraboloid ξn = b(z)(ξ2
1 + ... + ξ2

n−1)
τ+2
2 of order τ+2

2

at z.

Definition 6.3 Let Ω ⊂ Rn be a bounded open convex set and τ ≥ 0. We say

∂Ω has a parabolic support of order not more than τ if at every boundary point

z of Ω, ∂Ω has a parabolic support of some order τz ∈ [0, τ ].

Note that the larger τ is, the less requirement we put on Ω. Also, ∂Ω has a

parabolic support of order τ = 0 iff Ω satisfies the enclosing sphere condition.

We will also consider the following condition for the Borel measure µ:

(G) There exist a > 0 and ε > 0 such that

µ(E) ≤ a|E| for all Borel sets E ⊂ Ω− Ωε, (6.24)

where Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}. If µ is absolutely continuous with

respect to the Lebesgue measure and with density f(x), then by the Lebesgue

differentiation theorem (6.24) is equivalent to

f(x) ≤ a for a.e. x ∈ Ω− Ωε. (6.25)

We can now state the following theorem whose second part is due to Bakelman

(see [Bak94, Theorem 11.4]).

Theorem 6.4 Let c(x) =
|x|p

p
with 1 < p <∞, and R(y) = c0 detD2c∗(−y).

Suppose that Ω ⊂ Rn is a bounded open and strictly convex set, ψ ∈ C(∂Ω),

and µ is a finite Borel measure in Ω. Consider the Dirichlet problem

ω(R, u, .) = µ in Ω, and u = ψ on ∂Ω. (6.26)

We have
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(i) If p < 2 +
1

n− 1
, then (6.26) has a convex weak solution u ∈ C(Ω̄).

(ii) If 2 +
1

n− 1
≤ p, and in addition µ satisfies the assumption (G) and ∂Ω

has a parabolic support of order no more than τ for some nonnegative τ

satisfying
n

2

p− 2

p− 1
<
n+ τ + 1

τ + 2
, then (6.26) has a convex weak solution

u ∈ C(Ω̄).

Proof: First observe that R(y) = c0(q − 1)|y|n(q−2) = c0(q − 1)|y|−2
n(2−q)

2 ,

where q > 1 is the conjugate of p, i.e., 1
p

+ 1
q

= 1. Hence,∫
Rn

R(y) dy = c0(q − 1)

∫
Rn

|y|n(q−2) dy = +∞.

(i) Since µ is a finite Borel measure, there exists a sequence of measures µj

converging weakly to µ such that each µj is a finite combination of delta masses

with positive coefficients and {µj(Ω)} is bounded by some positive constant

B. For each j, by using [Bak86, Theorem 2] we can find uj ∈ C(Ω̄) which is

the convex weak solution to ω(R, uj, .) = µj in Ω and uj = ψ on ∂Ω. If we let

W ∈ C(Ω̄) be the convex weak solution to detD2W = 0 in Ω and W = ψ on

∂Ω, then uj ≤ W on Ω̄. We now prove that {uj} is also uniformly bounded

from below in Ω. Indeed, let ξ ∈ ∂Ω and ε > 0. There exists δ > 0 such that

|ψ(x) − ψ(ξ)| < ε for |x − ξ| < δ, x ∈ ∂Ω. Let A · x + b = 0 be the equation

of the supporting hyperplane to Ω at ξ and assume that Ω ⊂ {x : l(x) ≥ 0},
where l(x) := A · x + b. Since Ω is strictly convex, there is η > 0 such that

{x ∈ Ω̄ : l(x) ≤ η} ⊂ Bδ(ξ). Let M = min {ψ(x) : x ∈ ∂Ω, l(x) ≥ η} and

consider the function a(x) = ψ(ξ)− ε−κl(x), where κ is a constant satisfying

κ ≥ max {ψ(ξ)−ε−M
η

, 0}. Hence a(ξ) = ψ(ξ) − ε and it is easy to see that

a(x) ≤ ψ(x) on ∂Ω. Set vj(x) = uj(x)− a(x). Then vj ∈ C(Ω̄) is convex and

vj ≥ 0 on ∂Ω. By using Proposition 6.1 and noting 2 − q < 1/n we see that

there exists α > 0 depending only on q such that

vj(x) ≥ − [C(n, q,Ω)dist(x, ∂Ω)αω(R, vj,Ω)]1/n(q−1) on Ω.
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But we have by the definition of vj

ω(R, vj,Ω) = c0(q − 1)

∫
∂uj(Ω)

|y + κA|n(q−2) dy

= c0(q − 1)

∫
∂uj(Ω)∩{|y|≥2κ|A|}

|y + κA|n(q−2) dy

+ c0(q − 1)

∫
∂uj(Ω)∩{|y|≤2κ|A|}

|y + κA|n(q−2) dy

≤ max {(3
2
)n(q−2), (

1

2
)n(q−2)}c0(q − 1)

∫
∂uj(Ω)

|y|n(q−2) dy

+ c0(q − 1)

∫
B(0,3κ|A|)

|z|n(q−2) dz

= max {(3
2
)n(q−2), (

1

2
)n(q−2)}ω(R, uj,Ω) + C(n, q)(κ|A|)n(q−1)

≤ C(n, q, κ, |A|, B).

Therefore, we obtain

W (x) ≥ uj(x) ≥ a(x)− C(n, q, κ, |A|, B,Ω)dist(x, ∂Ω)α/n(q−1) on Ω. (6.27)

This shows that {uj} is uniformly bounded on Ω and hence we can extract a

subsequence still denoted by {uj} which converges locally uniformly on Ω to

some convex function u ∈ C(Ω). This gives ω(R, u, .) = µ on Ω. Moreover,

(6.27) also implies that for every ξ ∈ ∂Ω we have limΩ3x→ξ u(x) = ψ(ξ). Thus

the proof of (i) is completed. On the other hand, (ii) follows from [Bak86,

Theorem 6] or [Bak94, Theorem 11.4] with λ = 0. �

Since convex functions are c-convex, Lemma 6.2 together with Theorem 6.4

provides the c-convex subsolution w needed in Corollary 6.1 when g is bounded

from below by some positive constant c0 and the cost function c(x) ≈ 1
p
|x|p,

1 < p < ∞. We remark that in these cases in fact we have ωc(g, w)(E) ≥
c0|E|+µ(E). Therefore, we do not really need the technical assumption (6.15)

in Corollary 6.1 to ensure the existence of a c-convex weak solution. The reason

is that in that proof one can simply take µj(E) = µ(E ∩Ωj)+
c0
j
|E|. We then

also have µj ⇀ µ weakly, µj ≤ ωc(g, w), µj(Ω) < ωc(g, w)(Ω) ≤
∫

Rn g, and

spt(µj) = Ω̄. The last fact allows us to use Theorem 5.1 to obtain (6.17).



69

CHAPTER 7

Second Boundary Value

Problems

7.1 Aleksandrov Solution ⇒ Brenier Solution

Let c : Rn → R be a C1 strictly convex function satisfying lim|x|→+∞
c(x)
|x| =

+∞. Particularly, these imply that Dc : Rn → Rn is a homeomorphism with

(Dc)−1 = Dc∗, where c∗ denotes the Legendre transform of c. If Ω ⊂ Rn is an

open set, u : Ω → R is a function defined on Ω and x0 ∈ Ω, then we define

∂cu(x0) = {p ∈ Rn : u(x) ≥ u(x0)− c(x− p) + c(x0 − p) ∀x ∈ Ω}

and

Mu(x0) = {z ∈ Rn : u(x) ≥ u(x0) + z · (x− x0) + o(|x− x0|) for x near x0}.

It is easy to see that Mu(x0) is a convex set. On the other hand, if p ∈ ∂cu(x0)

then since c ∈ C1(Rn) we have

u(x) ≥ u(x0)− c(x− p) + c(x0 − p)

= u(x0)−Dc(x0 − p) · (x− x0) + o(|x− x0|) for x near x0.

Hence, −Dc(x0 − p) ∈Mu(x0). That is,

∂cu(x0) ⊂ {p ∈ Rn : −Dc(x0 − p) ∈Mu(x0)}.
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Note that in general the above containment is strict, but if u is differentiable

at x0 then as Mu(x0) = {Du(x0)} and ∂cu(x0) = {x0 − Dc∗(−Du(x0))}, we

have

∂cu(x0) = {p ∈ Rn : −Dc(x0 − p) ∈Mu(x0)}.

These observations will be useful later and ”would motivate” the definition

of c∗-convexity, introduced by Ma, Trudinger and Wang, in conjunction with

extending Lemma 1 in [Caf92] proved for quadratic cost function to more

general cost functions (see Lemma 7.4 below).

Now let Ω1, Ω2 be two bounded domains in Rn. Suppose that f ∈ L1(Ω1)

and g ∈ L1(Ω2) are two functions which are positive a.e. on Ω1 and Ω2

respectively, and satisfy the mass balance condition∫
Ω1

f(x) dx =

∫
Ω2

g(y) dy. (7.1)

In this section we consider the following second boundary value problem for

the Monge-Ampère type operators arising in optimal transportation

g(x−Dc∗(−Du(x))) det[I +D2c∗(−Du(x))D2u(x)] = f(x) in Ω1 (7.2)

∂cu(Ω1) = Ω2, (7.3)

where u ∈ C(Ω1) is a c-convex function on Ω1. First let us recall the two

notions of generalized solutions for equations (7.2)-(7.3), Brenier solutions

and Aleksandrov solutions. The first notion was introduced in the theory

of optimal transportation by Brenier, Caffarelli, Gangbo and McCann (see

[Bre91],[Caf96],[GM96]), and the latter was introduced recently and in-

dependently by us in the previous sections of the present thesis and Ma,

Trudinger and Wang, [MTW03]. One can also introduce a notion of vis-

cosity solutions for these equations as done in section 3.2 but we shall not

discuss it here.

Definition 7.1 A c-convex function u ∈ C(Ω1) is called a Brenier solution of

(7.2)-(7.3) if∫
Ω1

h(s(x))f(x)dx =

∫
Ω2

h(y)g(y)dy, for all h ∈ C(Rn) (7.4)
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or equivalently,∫
s−1(E)

f(x)dx =

∫
E∩Ω2

g(y)dy, for all Borel sets E ⊂ Rn, (7.5)

where s : Ω1 → Rn is a Borel measurable map defined a.e. on Ω1 by the

formula s(x) = x−Dc∗(−Du(x)) whenever u is differentiable at x.

Definition 7.2 We say that a c-convex function u ∈ C(Ω1) is an Aleksandrov

solution of (7.2)-(7.3) if

|∂cu(Ω1)− Ω2| = 0 ; |∂cu(Ω1)| = |Ω2| (7.6)

and ∫
∂cu(E)

g(y) dy =

∫
E

f(x) dx, for all Borel sets E ⊂ Ω1. (7.7)

Remark 7.1 Notice that (7.6) is equivalent to ∂cu(Ω1) ⊂ Ω2 a.e.

If u is an Aleksandrov solution then the measure ωc(u) defined on Ω1 is

absolutely continuous w.r.t. the Lebesgue measure. Indeed, suppose E ⊂ Ω1

is such that |E| = 0 then by (7.7) we obtain
∫
∂cu(E)

g(y) dy = 0. Hence,

|∂cu(E)| = 0 since ∂cu(E) ⊂ Ω2 a.e. by (7.6) and g > 0 a.e. on Ω2.

Lemma 7.1 If u is a generalized solution of equations (7.2)-(7.3) in the sense

of Aleksandrov then u is also a Brenier solution.

Proof: Let u be an Aleksandrov solution. Then by the above remark we

know that if E ⊂ Ω1 satisfying |E| = 0 then |∂cu(E)| = 0. We also observe

that if E ⊂ Ω1 is such that |∂cu(E)| = 0 then |E| = 0. This follows since if

|∂cu(E)| = 0 then by using (7.7) we obtain

0 =

∫
∂cu(E)

g(y) dy =

∫
E

f(x) dx.

Now define

u∗(y) = sup
x∈Ω1

[−c(x− y)− u(x)] = sup
x∈Ω1

[−h(y − x)− u(x)] ∀y ∈ Rn,
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where h(z) = c(−z). Then u∗ ∈ C(Rn) and is h-convex on Rn. Since u is

an Aleksandrov solution, it follows that ∂cu(x) ∩ Ω2 6= ∅ for every x in Ω1.

From this, it can be shown that for x ∈ Ω1 and y ∈ Rn we have y ∈ ∂cu(x) iff

x ∈ ∂h(u
∗,Rn)(y). Let G be the set of points in Ω1 where u is differentiable.

Let M = {y ∈ s(G) : u∗ is differentiable at y} and F = s−1(M) ∩ G. Then

we have |F | = |Ω1|, |M | = |s(G)| = |∂cu(G)| = |∂cu(Ω1)| = |Ω2| and s : F →
s(F ) = M is a bijection with t(y) = y −Dh∗(−Du∗(y)) = y +Dc∗(−Du∗(y))
as its inverse. Now if E ⊂ Rn is a Borel set then s−1(E) ⊂ Ω1 is a Borel set.

Hence, we have∫
s−1(E)

f(x) dx =

∫
s−1(E∩M)

f(x) dx =

∫
∂cu(s−1(E∩M))

g(y) dy

=

∫
s(s−1(E∩M))

g(y) dy =

∫
E∩M

g(y) dy =

∫
E

g(y) dy,

where the first equality follows since |s−1(E) − s−1(E ∩M)| = 0. Indeed, we

have

|s−1(E)− s−1(E ∩M)| = |{x ∈ G : s(x) ∈ E −M}|

= |{x ∈ G : ∂cu(x) ⊂ E −M}| = |H|,

here H denotes the set {x ∈ G : ∂cu(x) ⊂ E − M}. We have ∂cu(H) ⊂
∂cu(Ω1) − M , and hence |∂cu(H)| = 0 which gives |H| = 0 by the above

observation. This in turn implies that |s−1(E)− s−1(E ∩M)| = 0 as desired.

�

It is clear that (7.1) is a necessary condition for the existence of a general-

ized solution for equations (7.2)-(7.3) either in the sense of Brenier or in the

sense of Aleksandrov. Moreover, it is known from the optimal transportation

theory that under condition (7.1), there exists a unique Brenier solution up

to constants. Unfortunately, (7.1) is not sufficient to ensure the existence of

an Aleksandrov solution. In general, Brenier’s notion of solutions is strictly

weaker than that of Aleksandrov as shown by Caffarelli’s example in the case c

is a quadratic cost function, i.e., c(x) = 1
2
|x|2. Aleksandrov’s notion of solution

detects the singular part of the measure det[I +D2c∗(−Du(x))D2u(x)], while
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Brenier’s does not. Therefore, a basic question arises: under what conditions

is a solution of (7.2)-(7.3) in Brenier’s sense also a solution in the sense of

Aleksandrov. Understanding this question is important for the study of the

regularity of optimal map.

7.2 c∗-convexity and preliminary lemmas

In this section we recall the notion of c∗-convexity for subsets of Rn which

was introduced recently by Ma, Trudinger and Wang (see [MTW03]). We

assume that c ∈ C1(Rn) and is strictly convex.

Definition 7.3 If z1, z2 ∈ Rn, z1z2 is the corresponding line segment, and

x0 ∈ Rn, then a c∗-segment with respect to x0 is the set

{y : −Dc(x0 − y) ∈ z1z2}.

We notice that {y : −Dc(x0 − y) ∈ z1z2} = {x0 − (Dc)−1(−t) : t ∈ z1z2}.

It is clear from the assumptions on c that a c∗-segment is a continuous curve. In

fact, for any two points y1, y2 ∈ Rn and x0 ∈ Rn, there is a unique c∗-segment

γ relative to x0 connecting y1 and y2 and it is given by the formula

γ = {x0 −Dc∗(−z) | z ∈ z1z2},

where z1 = −Dc(x0−y1), z2 = −Dc(x0−y2) and z1z2 denotes the line segment

connecting z1 and z2.

Definition 7.4 Let E1 and E2 be two subsets of Rn. We say E2 is c∗-convex

relative to E1 if for any two points y1, y2 ∈ E2 and any x0 ∈ E1, the c∗-segment

relative to x0 connecting y1 and y2 lies in E2.

Remark 7.2 If c(x) = |x|2/2, then a set E2 is c∗-convex relative to E1 if and

only if E2 is a convex set in the standard sense.
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Remark 7.3 If E2 is c∗-convex relative to E1 then E2 is also c∗-convex relative

to E1. A way to see this is for any two points y1, y2 ∈ E2 and any x0 ∈ E1,

choose two sequences {yn1 }, {yn2 } ⊂ E2 such that yn1 → y1 and yn2 → y2. Then

for any n, by the assumption we have the c∗-segment relative to x0 connecting

yn1 and yn2 lies in E2. On the other hand, these c∗-segments converge in ”some

reasonable sense” to the c∗-segment relative to x0 connecting y1 and y2. Hence

the desired c∗-segment must lie in E2.

Lemma 7.2 Let {uj} ⊂ C(Ω) be a sequence of c-convex functions defined on

an open set Ω ⊂ Rn. Suppose that uj converge locally uniformly to a c-convex

function u ∈ C(Ω). We have

(i) If pj ∈ ∂cuj(xj) and xj → x ∈ Ω, pj → p ∈ Rn, then p ∈ ∂cu(x).

(ii) x −Dc∗(−Duj(x)) → x −Dc∗(−Du(x)) for a.e. x ∈ Ω, or equivalently,

Duj(x) → Du(x) for a.e. x ∈ Ω.

Proof: (i) We have

uj(z) ≥ uj(xj)− c(z − pj) + c(xj − pj)

= u(x) + [uj(xj)− u(xj)] + [u(xj)− u(x)]− c(z − pj) + c(xj − pj) ∀z ∈ Ω.

Since xj → x ∈ Ω, by taking j ≥ N for some number N large enough we

can assume that {xj} remains in fixed compact subset K of Ω. So [uj(xj) −
u(xj)] → 0 when j →∞ as uj → u uniformly on K. Hence, by letting j →∞
in the above inequality we obtain

u(z) ≥ u(x)− c(z − p) + c(x− p) ∀z ∈ Ω.

That is, p ∈ ∂cu(x) as desired.

(ii) Since uj, u ∈ C(Ω) are c-convex, they are differentiable a.e. on Ω. Now

let E denote the set of x in Ω such that all uj and u are differentiable at x.

Then |E| = |Ω|, and we shall show that

x−Dc∗(−Duj(x)) → x−Dc∗(−Du(x)) ∀x ∈ E.
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First note that {x − Dc∗(−Duj(x))} are locally bounded in Ω independent

of j. Thus for x ∈ E we may choose a subsequence {jk} such that x −
Dc∗(−Dujk(x)) converges as k → ∞, say to p ∈ Rn. By part (i) we must

have p ∈ ∂cu(x), so p = x − Dc∗(−Du(x)), since u is differentiable at x.

Since this is true for {uj} replaced by any subsequence, we conclude that

x − Dc∗(−Duj(x)) → x − Dc∗(−Du(x)) for all x ∈ E. This completes the

proof. �

Lemma 7.3 Let u ∈ C(Ω) be a c-convex functions on Ω. If x ∈ Ω such that

Du(x) exists, then s(y) = y−Dc∗(−Du(y)) is continuous at x, or equivalently,

Du(y) is continuous at x.

Proof: Let {xj} ⊂ Ω be any sequence such that xj → x and Du exists at

each xj. We shall show that s(xj) → s(x). Indeed, since xj → x ∈ Ω, w.l.g.

we can assume that {xj} remains in fixed compact subset K of Ω. Hence

{s(xj)} is bounded as they are contained in ∂cu(K). Thus any subsequence

of {s(xj)} has a convergent subsequence, and by Lemma 7.2 the limit of this

subsequence must be s(x). This implies that s(xj) → s(x). �

7.3 Brenier solution ⇒ Aleksandrov solution

In this section we shall prove that Brenier solution of equations (7.2)-(7.3)

is indeed Aleksandrov solution provided that Ω2 is c∗-convex relative to Ω1.

The main tool in showing this is Lemma 7.4 below, which is proved by Ma,

Trudinger and Wang in [MTW03].

Lemma 7.4 Suppose Ω2 is c∗-convex relative to Ω1. If u ∈ C(Ω1) is a c-

convex function on Ω1 such that ∂cu(x) ⊂ Ω2 for a.e. x in Ω1, then ∂cu(Ω1) ⊂
Ω2.

Proof: Let G denote the set of points where u is differentiable. Also define

s(x) = x−Dc∗(−Du(x)) whenever u is differentiable at x. Note that we then

have ∂cu(x) = {s(x)} if x ∈ G. We first claim that ∂cu(x) ⊂ Ω2 for every x in
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G. Indeed, if x ∈ G then ∂cu(x) is a singleton. Moreover, by the assumption

we can choose a sequence {xj} ⊂ G such that ∂cu(xj) ⊂ Ω2 for every j and

xj → x. Therefore, by Lemma 7.3 we get s(xj) → x−Dc∗(−Du(x)). Hence,

x− c∗(−Du(x)) ∈ Ω2, i.e., ∂cu(x) ⊂ Ω2. So the claim is proved. Now let x0 be

an arbitrary point in Ω1−G. If ∂cu(x0) is a single point then we can choose a

sequence {xj} ⊂ G such that {s(xj)} = ∂cu(xj) ⊂ Ω2 for every j and xj → x0.

By passing to a subsequence we can assume w.l.g. that s(xj) → p for some

p ∈ Ω2. But then by Lemma 7.2 we have p ∈ ∂cu(x0). Hence ∂cu(x0) = {p}
since ∂cu(x0) is a single point. This implies that ∂cu(x0) ⊂ Ω2. On the other

hand, if ∂cu(x0) is not singleton then the convex set Mu(x0) contains more

than one point. We now claim that: For any k ≥ 1, if z1, ..., zk are extreme

points of Mu(x0) and λ1, ..., λk are positive numbers such that λ1 + ...+λk = 1,

then the unique solution y of

−Dc(x0 − y) = λ1z1 + ...+ λkzk

belongs to Ω2.

We prove the claim by induction. Let z ∈Mu(x0) be an extreme point and

let y be the unique solution of −Dc(x0− y) = z. As z ∈Mu(x0) is an extreme

point, by arguing as in [Caf92] we can find a sequence {xi} ⊂ G such that

xi → x0 and Du(xi) → z. For each i, let pi be the single element of ∂cu(xi).

Then by the above result we know that {pi} ⊂ Ω2. Also, for every i we have

−Dc(x0 − pi) = Du(xi). (7.8)

By passing to a subsequence we can assume that pi → p ∈ Ω2 for some p.

Then by letting i → ∞ in (7.8) we obtain −Dc(x0 − p) = z. Thus we must

have y = p, i.e., y ∈ Ω2. So the claim holds for k = 1. Now suppose that it

holds up to k for some k ≥ 2. We shall show that it is also true for k + 1.

Indeed, let y be the unique solution of −Dc(x0 − y) = λ1z1 + λ2...+ λk+1zk+1,

where zi are extreme points of Mu(x0) and λi are positive numbers satisfying

λ1 + ...+ λk+1 = 1. Then we have

−Dc(x0 − y) = λ1z1 + (1− λ1)z
∗ (7.9)



77

with z∗ := λ2

1−λ1
z2 + ... + λk+1

1−λ1
zk+1. Now let y1, y2 be the unique solutions of

−Dc(x0 − y1) = z1 and −Dc(x0 − y2) = z∗ respectively. By the induction

hypothesis we get y1 and y2 belong to Ω2 since z∗ is a convex combination

of k extreme points of Mu(x0). But since Ω2 is c∗-convex relative to x0, the

c∗-segment connecting y1 and y2, γ = {p ∈ Rn : −Dc(x0 − p) ∈ z1z∗}, is

contained in Ω2. Hence this combined with (7.9) yield y ∈ Ω2 as wanted.

So the claim is proved. We now show that ∂cu(x0) ⊂ Ω2. Let p ∈ ∂cu(x0),

then −Dc(x0 − p) ∈ Mu(x0). Hence we can write −Dc(x0 − p) as a convex

combination of extreme points of Mu(x0). But then p ∈ Ω2 by the claim. So

∂cu(x0) ⊂ Ω2 and the proof is completed. �

Theorem 7.1 Let Ω1, Ω2 be bounded domains in Rn such that Ω2 is c∗-convex

relative to Ω1. Suppose u ∈ C(Ω1) is a c-convex function on Ω1 satisfying∫
Ω1

h(s(x))f(x) dx =

∫
Ω2

h(y)g(y) dy for all h ∈ C(Rn), (7.10)

where s is defined a.e. on Ω1 by the formula s(x) = x−Dc∗(−Du(x)) whenever

u is differentiable at x.

Then ∂cu(Ω1) ⊂ Ω2 and |∂cu(Ω1)| = |Ω2|. Moreover, we have∫
∂cu(E)

g(y) dy =

∫
E

f(x) dx for all Borel sets E ⊂ Ω1. (7.11)

Proof: Let G denote the set of points where u is differentiable. Then

|G| = |Ω1|. We first claim that ∂cu(x) ⊂ Ω2 for every x in G. Indeed, since

otherwise there exists x0 ∈ G such that ∂cu(x0) 6⊂ Ω2, i.e., s(x0) 6∈ Ω2. Then we

can find a positive number r satisfying B(s(x0), 2r)∩Ω2 = ∅. Also, by Lemma

7.3 there is a t > 0 such that B(x0, t) ⊂ Ω1 and s(B(x0, t)∩G) ⊂ B(s(x0), r).

Now choose a nonnegative function h ∈ C(Rn) such that h = 1 on B(s(x0), r)

and supp(h) ⊂ B(s(x0), 2r). Then by substituting this function h into (7.10)

we derive that

0 =

∫
Ω1

h(s(x))f(x) dx ≥
∫
B(x0,t)∩G

h(s(x))f(x) dx

=

∫
B(x0,t)∩G

f(x) dx =

∫
B(x0,t)

f(x) dx > 0.



78

This gives a contradiction and hence the claim is proved. But then by applying

Lemma 7.4 we obtain ∂cu(Ω1) ⊂ Ω2.

First we show that
∫
∂cu(E)

g(y) dy ≥
∫
E
f(x) dx for every Borel set E ⊂ Ω1.

For any compact set K1 ⊂ Ω1, the set K2 = ∂cu(K1) is compact. If now

h ∈ C(Rn) is any function with h ≥ χK2 , then∫
Ω2

h(y)g(y) dy =

∫
Ω1

h(s(x))f(x) dx ≥
∫

Ω1

χK2(s(x))f(x) dx

=

∫
G

χK2(s(x))f(x) dx =

∫
{x∈G:s(x)∈K2}

f(x) dx ≥
∫
{x∈K1∩G:s(x)∈K2}

f(x) dx

=

∫
{x∈K1∩G:∂cu(x)⊂K2}

f(x) dx =

∫
K1∩G

f(x) dx =

∫
K1

f(x) dx.

By the above claim we have K2 = ∂cu(K1) ⊂ ∂cu(Ω1) ⊂ Ω2. Hence letting

h decrease to χK2 in the above inequality and noting that |∂Ω2| = 0 we get∫
K2
g(y) dy ≥

∫
K1
f(x) dx, or ωc(g, u)(K1) ≥

∫
K1
f(x) dx. The regularity of

the measure f(x)dx and of the generalized Monge-Ampère measure ωc(g, u)

then imply that

ωc(g, u)(E) ≥
∫
E

f(x) dx for all Borel sets E ⊂ Ω1. (7.12)

In particular, if ωc(g, u)(S) = 0 then
∫
S
f(x) dx = 0.

To prove the reverse inequality in (7.12) we note first that for any compact

set K1 ⊂ Ω1, by Aleksandrov’s Lemma we have

|{p ∈ Rn : p ∈ ∂cu(K1) ∩ ∂cu(Ω1 −K1)}| = 0.

Then (∂cu)
−1(∂cu(K1)) − K1 has Lebesgue measure zero because it is con-

tained in {p ∈ Rn : p ∈ ∂cu(K1) ∩ ∂cu(Ω1 − K1)}. Thus together with

(7.12), this implies that
∫

(∂cu)−1(∂cu(K1))−K1
f(x) dx = 0, or equivalently as

K1 ⊂ (∂cu)
−1(∂cu(K1)),∫

(∂cu)−1(∂cu(K1))

f(x) dx =

∫
K1

f(x) dx. (7.13)
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Now for any h ∈ C(Rn) such that h ≥ χ∂cu(K1) we have∫
∂cu(K1)

g(y) dy =

∫
Ω2

χ∂cu(K1)(y)g(y) dy

≤
∫

Ω2

h(y)g(y) dy =

∫
Ω1

h(s(x))f(x) dx. (7.14)

If we take 0 ≤ h ≤ 1, h ≥ χ∂cu(K1) and h converges uniformly to zero on

compact sets outside ∂cu(K1), then h(s(x)) converges uniformly to zero on

compact subsets of Ω1 − (∂cu)
−1(∂cu(K1)). Therefore,∫

Ω1

h(s(x))f(x) dx→
∫

(∂cu)−1(∂cu(K1))

f(x) dx =

∫
K1

f(x) dx,

where we have used (7.13) in the last equality. Hence by combining with (7.14)

we obtain∫
∂cu(K1)

g(y) dy ≤
∫
K1

f(x) dx for all compact sets K1 ⊂ Ω1.

The regularity of the measure f(x)dx and of the generalized Monge-Ampère

measure ωc(g, u) then imply a similar inequality for K1 replaced by any Borel

subset of Ω1, as above. From this and (7.12) we get (7.11). As a consequence

of (7.11) and by using (7.10) with h ≡ 1 we have∫
∂cu(Ω1)

g(y) dy =

∫
Ω1

f(x) dx =

∫
Ω2

g(y) dy,

and hence |∂cu(Ω1)| = |Ω2| since ∂cu(Ω1) ⊂ Ω2 and |∂Ω2| = 0. The proof is

then completed. �
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CHAPTER 8

Aleksandrov Type Estimates

In this chapter we prove a quantitative estimate of Aleksandrov type for

c-convex functions which generalizes the well known estimate established by

Aleksandrov in 1968 for convex functions (see [Gut01, Theorem 1.4.2]). Alek-

sandrov estimate plays an important role in the theory of Monge-Ampère equa-

tion and it is one of the main ingredients in Caffarelli regularity theory for the

equation. Aleksandrov proved the estimate by purely geometric method and

using the fact that the standard subdifferential at a given point is convex which

however is no longer true in our general setting. Here we prove our estimate

analytically and we only need u ≥ 0 on the boundary of Ω instead of requiring

u = 0 on ∂Ω as Aleksandrov.

Theorem 8.1 Suppose c(x) = 1
p
|x|p, 1 < p < 2 + 1

n−1
. Let Ω ⊂ Rn be a

bounded open convex set, and u ∈ C(Ω̄) be a c-convex function on Ω with

u ≥ 0 on ∂Ω. We have

(i) If 1 < p ≤ 2 then

u(x) ≥ −C(n, p)
[
diam(Ω)

n−(p−1)
p−1 dist(x, ∂Ω) |∂cu(Ω)|

] p−1
n ∀x ∈ Ω.

(ii) If 2 < p < 2 + 1
n−1

then

u(x) ≥ −C(n, p)
[
diam(Ω)n−1 dist(x, ∂Ω)

(p−1)−n(p−2)
p−1 |∂cu(Ω)|

] p−1
n ∀x ∈ Ω,

where C(n, p) is a constant depending only on the dimension n and p.
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Proof:

Let x0 ∈ Ω be such that u(x0) < 0, and G(z) = x0 − Dc∗(−z). In order

to prove the theorem we first define a c-convex function, whose graph is the

upside-down c-cone surface with vertex at (x0, u(x0)), as follows

w(x) = sup
v∈F

v(x) ∀x ∈ Ω̄,

where

F = {v ∈ C(Ω̄) : v is c-convex , v(x0) ≤ u(x0) and v|∂Ω ≤ u|∂Ω}.

Then since u ∈ F we have w ≥ u on Ω̄, w(x0) = u(x0), w is c-convex on Ω

and w|∂Ω = u|∂Ω.

Claim 1: w ∈ C(Ω̄). Indeed, since Ω is convex it is q-regular with q is the

conjugate of p. From [BR02, Theorem 4.7] there exists h ∈ W 1,q(Ω) ∩ C(Ω̄)

weak solution to the q-Laplacian

−div
(
|Dh(x)|q−2Dh(x)

)
+ n = 0, in Ω and h = −u on ∂Ω.

Notice that div (|Dh(x)|q−2Dh(x)) = div (Dc∗ (Dh(x))) . For each f(x) =

−c(x−y)−λ ∈ F , we have−f(x) ≥ −u(x) on ∂Ω, and−div (Dc∗ (−Df(x)))+

n = 0. Hence by the comparison principle [BR02, Theorem 3.1] for the q-

Laplacian we get that−f ≥ h in Ω̄, and therefore w(x) = supv∈F v(x) ≤ −h(x)
for all x ∈ Ω̄. Thus we obtain u ≤ w ≤ −h in Ω̄ and hence the claim follows

since u,−h ∈ C(Ω̄), u|∂Ω = −h|∂Ω and w is c-convex on Ω.

From Claim 1 above and by Lemma 5.1 we obtain

∂cu(Ω) ⊃ ∂cw(Ω) ⊃ ∂cw(x0)

= {y : u(x0)− c(x− y) + c(x0 − y) ≤ u(x) ∀x ∈ ∂Ω}

⊃ {y : u(x0)− c(x− y) + c(x0 − y) ≤ 0 ∀x ∈ ∂Ω}

⊃ {y : u(x0)+ < Dc(x0 − y), x0 − x >≤ 0 ∀x ∈ ∂Ω} =: E

We also observe that the set E is c∗-convex with respect to x0 in the sense

that if y1, y2 ∈ E, then the curve connecting y1 and y2

{x0 −Dc∗(−z) : z ∈ z1z2} ⊂ E,
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where z1 = −Dc(x0−y1) and z2 = −Dc(x0−y2). Indeed, if z = λz1+(1−λ)z2

for λ ∈ [0, 1] and y = x0 −Dc∗(−z) then we have for any x ∈ ∂Ω

u(x0)+ < Dc(x0 − y), x0 − x >= u(x0)+ < Dc(Dc∗(−z)), x0 − x >

= λ[u(x0)+ < −z1, x0 − x >] + (1− λ)[u(x0)+ < −z2, x0 − x >]

= λ[u(x0)+ < Dc(x0 − y1), x0 − x >]

+ (1− λ)[u(x0)+ < Dc(x0 − y2), x0 − x >] ≤ 0.

This means y = x0 −Dc∗(−z) ∈ E as desired.

Let x∗ be the point on ∂Ω such that |x0 − x∗| = dist(x0, ∂Ω), and let z0 =
−u(x0)

dist(x0,∂Ω)
x∗−x0

|x∗−x0| . Then since Ω is convex, we easily see by a simple geometric

observation that

< x∗ − x0, x− x0 >≤ |x∗ − x0|2 for all x ∈ ∂Ω. (8.1)

Claim 2: We have G(B̄(0, −u(x0)
diam(Ω)

)) ⊂ E and G(z0) ∈ E.

Indeed, suppose y = G(z) = x0 − Dc∗(−z) for some z ∈ B̄(0, −u(x0)
diam(Ω)

).

Then for every x ∈ ∂Ω, we have

u(x0)+ < Dc(x0 − y), x0 − x >= u(x0)+ < −z, x0 − x >

≤ u(x0) + diam(Ω)|z| ≤ 0,

which gives y ∈ E as desired. On the other hand, if we let y0 = G(z0) then

we have for any x ∈ ∂Ω

u(x0)+ < Dc(x0 − y0), x0 − x >= u(x0)+ < −z0, x0 − x >

= u(x0) +
−u(x0)

dist(x0, ∂Ω)

1

|x∗ − x0|
< x∗ − x0, x− x0 >

≤ u(x0) +
−u(x0)

dist(x0, ∂Ω)
|x∗ − x0| = 0,

where we have used (8.1) in the last inequality. This gives y0 ∈ E as wanted.

By claim 2 and since E is c∗-convex with respect to x0 we obtainG(H) ⊂ E,

where H is the closed convex hull of the point
[

−u(x0)
dist(x0,∂Ω)

]
x∗−x0

|x∗−x0| and the ball
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B(0, −u(x0)
diam(Ω)

). Therefore, in summing up we get G(H) ⊂ ∂cu(Ω). Hence,

|∂cu(Ω)| ≥ |G(H)| = |Dc∗(−H)| =
∫
H

detD2c∗(−y) dy

= (q − 1)

∫
H

|y|n(q−2) dy.

Now the inequalities stated in the theorem follow from the estimates (6.22)

and (6.23) in the proof of Proposition 6.1. �
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APPENDIX A

Perron Method For The

Dirichlet Problems

In this appendix we shall show that the standard Perron method can be car-

ried out to prove Theorem 6.2 provided that we assume in addition a subsolu-

tion to the problem exists. Suppose c satisfies (H1) with lim|x|→∞
c(x)

|x|
= +∞

and g ∈ L1
loc(Rn) is nonnegative a.e. on Rn. Let Ω ⊂ Rn be a strictly c-convex

open set, ψ ∈ C(∂Ω) and µ =
∑N

i=1 aiδxi
where xi ∈ Ω and ai > 0. We

consider the following Dirichlet problem

g(x−Dc∗(−Du(x)))det[I +D2c∗(−Du(x))D2u(x)] = µ in Ω (A.1)

u = ψ on ∂Ω (A.2)

First define

F(g, µ, ψ) := {v ∈ C(Ω) : v is c-convex, ωc(g, v) ≥ µ in Ω and v = ψ on ∂Ω}.

When g ≡ 1 we simply write F(µ, ψ) for F(1, µ, ψ). Suppose F(g, µ, ψ) 6= ∅,
and let W be the unique generalized solution for the associated homogeneous

Dirichlet problem. Then we have v ≤ W on Ω for every v ∈ F(g, µ, ψ).

Therefore, all functions in F(g, µ, ψ) are uniformly bounded from above on Ω

and we can define

U(x) = sup {v(x) : v ∈ F(g, µ, ψ)} ∀x ∈ Ω.
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Pick any W ∈ F(g, µ, ψ) and we then get W ≤ U ≤ W on Ω. So U = ψ on

∂Ω, U is c-convex on Ω and U ∈ C(Ω). Moreover, by the comparison principle

we can see that if our nonhomogeneous Dirichlet problem has a weak solution

then it must be U.

Theorem A.1 Suppose c satisfies condition (H1) with lim|x|→∞
c(x)

|x|
= +∞.

Let Ω ⊂ Rn be a strictly c-convex open set, ψ ∈ C(∂Ω) and µ =
∑N

i=1 aiδxi

where xi ∈ Ω and ai > 0. If F(g, µ, ψ) 6= ∅, then there exists a unique c-convex

function u ∈ C(Ω) that is a weak solution to the Dirichlet problem (A.1)-(A.2).

Proof: Let U and W be defined as above. We shall show that U is the

desired solution. First we claim that

(a) If u, v ∈ F(g, µ, ψ) then max {u, v} ∈ F(g, µ, ψ).

(b) U ∈ F(g, µ, ψ).

Step 1: Proof of (a). Let φ = max {u, v}, Ω0 = {x ∈ Ω : u(x) = v(x)},
Ω1 = {x ∈ Ω : u(x) > v(x)} and Ω2 = {x ∈ Ω : u(x) < v(x)}. If E ⊂ Ω1

then ωc(g, φ)(E) ≥ ωc(g, u)(E) and if E ⊂ Ω2 then ωc(g, φ)(E) ≥ ωc(g, v)(E).

Also, if E ⊂ Ω0, then ∂cu(E) ⊂ ∂cφ(E) and ∂cv(E) ⊂ ∂cφ(E). Given E ⊂ Ω

a Borel set, write E = E0 ∪ E1 ∪ E2 with Ei ⊂ Ωi. We then have

ωc(g, φ)(E) = ωc(g, φ)(E0) + ωc(g, φ)(E1) + ωc(g, φ)(E2)

≥ ωc(g, u)(E0) + ωc(g, u)(E1) + ωc(g, v)(E2)

≥ µ(E0) + µ(E1) + µ(E2) = µ(E).

Step 2: For each y ∈ Ω there exists a uniformly bounded sequence vm ∈
F(µ, ψ) converging uniformly on compact subsets of Ω to a function w ∈
F(µ, ψ) so that w(y) = U(y).

Since F(g, µ, ψ) 6= ∅ we can pick u0 ∈ F(g, µ, ψ). If u ∈ F(g, µ, ψ) then

u ≤ W in Ω. Fix y ∈ Ω, then by definition of U there exists a sequence um ∈
F(g, µ, ψ) such that um(y) → U(y) as m→ +∞. Let vm = max {u0, um}. By

step 1, vm ∈ F(g, µ, ψ) and therefore um(y) ≤ vm(y) ≤ U(y) and so vm(y) →
U(y). Note also that {vm} is uniformly bounded in Ω since u0 ≤ vm ≤ W
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in Ω. Now since vm is c-convex in Ω we know that given K ⊂ Ω compact,

vm is Lipschitz in K, say with constant C(K,m). We claim that C(K,m)

is uniformly bounded in m. Indeed, by Lemma 2.3 there exists R > 0 such

that ∂cvm(K) ⊂ B(0, R) for all m = 1, 2, ... Choose the ball B which is large

enough such that z − p ∈ B for all z ∈ K and p ∈ B(0, R). Then for any

x, y ∈ K, by choosing p ∈ ∂cvm(y) and since c is convex on Rn we have

vm(x)− vm(y) ≥ −c(x− p) + c(y − p) ≥ −||c||Lip(B)|x− y|.

Similarly, we also have vm(y) − vm(x) ≥ −||c||Lip(B)|x − y|. Thus |vm(x) −
vm(y)| ≤ ||c||Lip(B)|x − y| for all x, y ∈ K, that is, C(k,m) ≤ ||c||Lip(B) for

all m. This proves the claim. Therefore, {vm} are equicontinuous on K and

uniformly bounded in Ω. Hence since u0 ≤ vm ≤ W and u0 = W = ψ

on ∂Ω, by Arzela-Ascoli’s lemma there exists a subsequence still denoted by

{vm} converging uniformly on compact subsets of Ω to a function w ∈ C(Ω)

satisfying w = ψ on ∂Ω and so w(y) = U(y). Also w is c-convex by Lemma

2.1. Moreover for each i = 1, ..., N , by using the first part of Lemma 3.1 we

have ωc(g, w)({xi}) ≥ lim supm→∞ ωc(g, vm)({xi}) ≥ µ({xi}). Therefore, we

get w ∈ F(g, µ, ψ) and hence w ≤ U in Ω.

Step 3: Proof of (b). By the observation before this lemma, to prove (b)

it suffices to show that ωc(g, U) ≥ µ in Ω. Let i ∈ {1, ..., N}. By Step 2

there exists a sequence {vm} ∈ F(g, µ, ψ), uniformly bounded on Ω, such

that vm → w ∈ F(g, µ, ψ) uniformly on compacts of Ω as m → ∞ with

w(xi) = U(xi). If p ∈ ∂cw(xi) then

U(x) ≥ w(x) ≥ w(xi)− c(x− p) + c(xi − p) = U(xi)− c(x− p) + c(xi − p)

for all x ∈ Ω. So p ∈ ∂cU(xi) and hence ∂cw(xi) ⊂ ∂cU(xi). This yields

ωc(g, U)({xi}) ≥ ωc(g, w)({xi}) ≥ µ({xi}) = ai.

Therefore, we obtain ωc(g, U) ≥ µ in Ω.

Step 4: ωc(g, U) =
∑N

i=1 λiaiδxi
for some λi ≥ 1 ∀i = 1, ..., N . Let x0 be

an arbitrary element in Ω − {x1, ..., xN}, and B = B(x0, r) be any open ball
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centered at x0 such that xi 6∈ B for all i = 1, ..., N and B ⊂ Ω. Define

w(x) = sup {v(x) : v ∈ F∗} ∀x ∈ Ω,

where F∗ = {v ∈ C(Ω), v is c-convex, and v(x) ≤ U(x) on Ω \B}. Then

w ∈ C(Ω), w is c-convex, U ≤ w in Ω and w = U on Ω \ B since U ∈ F∗.

Moreover, for every Borel set E ⊂ Ω we have

ωc(g, w)(E) = ωc(g, w)(E ∩B) + ωc(g, w)(E ∩Bc) ≥ ωc(g, w)(E ∩Bc)

≥ ωc(g, U)(E ∩Bc) ≥ µ(E ∩Bc) = µ(E ∩ {x1, ..., xN}) = µ(E).

Therefore, w ∈ F(g, µ, ψ) and hence we obtain U = w on Ω. Now let

S̃ = {p ∈ Rn : p ∈ ∂c(w,Ω)(z1)∩ ∂c(w,Ω)(z2) for some z1, z2 ∈ Ω, z1 6= z2}.

We shall show that ∂cw(B) ⊂ S̃. Indeed, let p ∈ ∂cw(z1) for some z1 ∈ B

and define g(x) = w(z1) − c(x − p) + c(z1 − p). Then g(x) ≤ w(x) for every

x in Ω. We claim that there must be a z2 ∈ Ω \ {z1} such that g(z2) = w(z2)

since otherwise we have δ := minx∈Ω\B [w(x)− g(x)] > 0. Then by letting

f(x) = g(x)+ δ we get f ∈ C(Ω), f is c-convex, and f(x) = g(x)+ δ ≤ g(x)+

w(x)−g(x) = w(x) = U(x) for every x in Ω\B. So f ∈ F∗ and hence w(z1) ≥
f(z1) = g(z1) + δ = w(z1) + δ > w(z1). This gives a contradiction and hence

the claim is proved. Therefore, ∂cw(B) ⊂ S̃ and so by Lemma 2.2 we obtain

|∂cU(B)| = |∂cw(B)| = 0. Thus, the measure ωc(g, U) is concentrated on the

set {x1, ..., xN}. Hence since ωc(g, U) ≥ µ, we have ωc(g, U) =
∑N

i=1 λiaiδxi

with λi ≥ 1 for every i = 1, ..., N .

Step 5: ωc(g, U) = µ in Ω. To prove this by step 4 we only need to show

that λi = 1 for every i = 1, ..., N . Indeed, suppose by contradiction that

λi0 > 1 for some i0 ∈ {1, ..., N}, we shall derive a contradiction. First choose

an open ball B = B(xi0 , r) so that xi 6∈ B for all i ∈ {1, ..., N} \ {i0} and

B ⊂ Ω. Define

G = {v ∈ C(Ω) : v is c-convex, v(xi0) ≤ U(xi0) and v(x) ≤ U(x) on Ω \B}
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and for each n ∈ N,

Gn = {v ∈ C(Ω) : v is c-convex, v(xi0) ≤ U(xi0)+
1

n
, v(x) ≤ U(x) on Ω \B}.

Note that U ∈ G and U ∈ Gn for every n. Now define

w(x) = sup {v(x) : v ∈ G} ∀x ∈ Ω,

wn(x) = sup {v(x) : v ∈ Gn} ∀x ∈ Ω.

Then it is clear that w, wn are c-convex and continuous on Ω, and U ≤
w,wn on Ω. Moreover, w(xi0) = U(xi0), wn(xi0) ≤ U(xi0) + 1

n
and w,wn are

equal to U on Ω \B. We further have the followings

Claim 1: U(x) = w(x) on Ω.

Since ∂cU(xi) ⊂ ∂cw(xi) for every i = 1, ..., N , we have by Step 3 and

Step 4 that ωc(g, w) ≥ ωc(g, U) ≥ µ. Therefore w ∈ F(g, µ, ψ) and the claim

follows.

Claim 2: |∂cwn(B)| = |∂cwn({xi0})|. This will follow if we can show that

|∂cw(B \ {xi0})| = 0. Let

S̃n = {p ∈ Rn : p ∈ ∂c(wn,Ω)(z1)∩∂c(wn,Ω)(z2) for some z1, z2 ∈ Ω, z1 6= z2}.

We shall show that ∂cw(B \ {xi0}) ⊂ S̃n. Indeed, let p ∈ ∂cw(z1) for some

z1 ∈ B \ {xi0} and define g(x) = wn(z1) − c(x − p) + c(z1 − p). Then g(x) ≤
wn(x) for every x in Ω. We claim that there must be a z2 ∈ Ω \ {z1} such that

g(z2) = wn(z2) since otherwise we have

α := min
x∈Ω\B

[wn(x)− g(x)] > 0 and wn(xi0)− g(xi0) > 0.

Then by letting f(x) = g(x) + δ where δ = min {α,wn(xi0)− g(xi0)} > 0 we

get f ∈ C(Ω), f is c-convex, f(xi0) ≤ g(xi0) + wn(xi0) − g(xi0) = wn(xi0) ≤
U(xi0)+ 1

n
and f(x) ≤ g(x)+w(x)−g(x) = w(x) = U(x) for every x in Ω\B.

Therefore f ∈ Gn and hence we obtain wn(z1) ≥ f(z1) = g(z1) + δ = wn(z1) +

δ > wn(z1). This is a contradiction, that is, there exists z2 ∈ Ω \ {z1} such

that g(z2) = wn(z2). But this implies that p ∈ ∂c(wn,Ω)(z1) ∩ ∂c(wn,Ω)(z2),
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i.e., p ∈ S̃n. Thus ∂cwn(B \ {xi0}) ⊂ S̃n and |∂cw(B \ {xi0})| = 0 by Lemma

2.2.

Claim 3: There exists n0 ∈ N depending only on U,Ω, B and xi0 such that

for all n ≥ n0 we have

wn(xi0) = U(xi0) +
1

n
.

Indeed, let S̃ = {p ∈ Rn : p ∈ ∂c(U,Ω)(y) ∩ ∂c(U,Ω)(z) for some y, z ∈
Ω with y 6= z}. Then |S̃| = 0 by Lemma 2.2. But |∂cU(xi0)| = λi0ai0 > 0.

Therefore, there exists p ∈ ∂cU(xi0) such that p 6∈ S̃. Hence,

U(x) > U(xi0)− c(x− p) + c(xi0 − p) ∀x ∈ Ω \ {xi0}.

Thus

δ := min
Ω\B

{U(x)− U(xi0) + c(x− p)− c(xi0 − p)} > 0.

So we can pick n0 ∈ N large enough such that 1
n0
≤ δ. Now for any n ≥ n0,

let f(x) = U(xi0) − c(x − p) + c(xi0 − p) + 1
n
. Then f ∈ C(Ω), f is c-convex

on Ω and f(xi0) = U(xi0) + 1
n
. Moreover, for every x in Ω \B we have

f(x) ≤ U(xi0)− c(x− p) + c(xi0 − p) +
1

n0

≤ U(xi0)− c(x− p) + c(xi0 − p) + δ

≤ U(xi0)− c(x− p) + c(xi0 − p) + U(x)− U(xi0) + c(x− p)− c(xi0 − p)

= U(x).

Therefore, f ∈ Gn and hence

U(xi0) +
1

n
≥ wn(xi0) ≥ f(xi0) = U(xi0) +

1

n
.

So wn(xi0) = U(xi0) + 1
n

for all n ≥ n0.

Claim 4: There exists a subsequence {wnk
} of {wn} such that wnk

→ U

uniformly on Ω.

For every n, we have U ≤ wn ≤ W on Ω. Therefore, by arguing as in the

proof of Step 2 there exist u ∈ C(Ω) with u = U on ∂Ω and a subsequence

{wnk
} of {wn} such that wnk

→ u locally uniformly on Ω. On the other hand,
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we have U ≤ u in Ω and u = U in Ω \B since U ≤ wnk
on Ω and wnk

= U on

Ω \B. Also, we have u is c-convex on Ω by Lemma 2.1. Moreover, by claim 3

we get

u(xi0) = lim
k→∞

wnk
(xi0) = lim

k→∞
[U(xi0) +

1

nk
] = U(xi0).

So u ∈ G and hence by claim 1 we obtain u ≤ U in Ω. Thus, u = U in Ω and

wnk
→ U uniformly on Ω since wnk

= U on Ω \B.

By claim 4 and Corollary 3.1 we get ωc(g, wnk
) → ωc(g, U) weakly. Hence,

by using claim 2 and the fact that |∂cU(B)| = |∂cU(xi0)| we obtain

|∂cwnk
(xi0)| → |∂cU(xi0)| = λi0ai0 .

But since λi0 > 1 we therefore can choose nk0 ∈ N, nk0 ≥ n0 such that

|∂cwnk0
(xi0)| ≥ ai0 . Moreover, for every i = 1, ..., N , i 6= i0 since U(xi) =

wnk0
(xi) and U ≤ wnk0

in Ω we get ∂cU(xi) ⊂ ∂cwnk0
(xi). So |∂cwnk0

(xi)| ≥
|∂cU(xi)| ≥ ai. Thus ωc(g, wnk0

) ≥ µ and hence wnk0
∈ F(g, µ, ψ). This

implies that U ≥ wnk0
in Ω. Then by combining with claim 3 we obtain

U(xi0) ≥ wnk0
(xi0) = U(xi0) +

1

nk0
.

This yields a contradiction. So we must have λi = 1 for all i = 1, ..., N , i.e.,

ωc(g, U) = µ in Ω and completes the proof of the existence of a weak solution

to the problem. The uniqueness follows from Lemma 5.1. �

Remark A.1 Let Ω ⊂ Rn be a strictly convex open set, ψ ∈ C(∂Ω) and

µ =
∑N

i=1 aiδxi
where xi ∈ Ω and ai > 0. Then we claim that if c satisfies

conditions as in Lemma 6.2 and if

a1 + · · ·+ aN <

∫
Rn

detD2c∗(−y) dy (A.3)

then F(µ, ψ) 6= ∅. In fact, the following proof will show that there exists a

convex function in F(µ, ψ). Indeed, let R be defined as in Lemma 6.2 and

from now on we only work with this function R in this section. Consider the

following equation

R(Du) detD2u = µ in Ω

u = ψ on ∂Ω
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in the generalized sense. By Theorem 2 in [Bak86] ( see also Theorem 11.2

in [Bak94] ), this equation has a unique generalized convex solution, say u.

But then by using Lemma 6.2 we get u ∈ F(µ, ψ). So the claim is proved.

We remark that if c(x) = 1
p
|x|p, 1 < p < +∞, then c∗(y) = 1

q
|y|q, where q

is the conjugate of p, i.e., 1
p

+ 1
q

= 1. Then we have R(y) = detD2c∗(−y) =

(q − 1)|y|n(q−2) and hence all the above conditions are satisfied without any

restrictions on a1, · · · , aN because
∫

Rn R(y) dy = +∞. Therefore, F(µ, ψ) 6= ∅
for all cost functions c(x) = 1

p
|x|p, 1 < p < +∞.
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[CC95] X. Cabré and L.A. Cafarelli. Fully nonlinear elliptic equations. Amer-

ican Mathematical Society Colloquium Publications, volume 43,

1995.

[Caf92] L. A. Caffarelli. The regularity of mappings with a convex potential.

J. Amer. Math. Soc. 5 (1992), no. 1, 99–104.

[Caf96] L. A. Caffarelli. Allocation maps with general cost functions. Lecture

Notes in Pure and Appl. Math., 177, Dekker, New York, 1996.



93

[Caf03] L. A. Caffarelli. The Monge-Ampère equation and optimal transporta-

tion, an elementary review. Lecture Notes in Math., 1813, Springer,

Berlin, 2003, 1-10.

[Caf04] L. A. Caffarelli. The Monge-Ampère equation and optimal transporta-

tion. Contemp. Math., 353, Amer. Math. Soc., Providence, RI, 2004,

43-52.

[Die88] H. Dietrich. On c-convexity and c-subdifferentiability of functionals.

Optimization 19 (1988), no. 3, 355–371.

[EG99] L.C. Evans and W. Gangbo. Differential equations methods for the

Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc.

137 (1999), no. 653.

[EN74] K.H. Elster and R. Nehse. Zur Theorie der Polarfunktionale. Math.

Operationsforsch. Statist. 5 (1974), no. 1, 3–21.

[GM96] W. Gangbo and R.J. McCann. The geometry of optimal transporta-

tion. Acta Math. 177 (1996), no. 2, 113–161.

[GT01] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equa-

tions of Second Order. Springer–Verlag, New York, 2001.

[Gut01] C. E. Gutiérrez. The Monge-Ampère Equation. Birkhaüser, Boston,
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