Part I. (Do 3 problems)

1. Let \(x_k \) be a sequence in a metric space \((X, d)\) such that \(\sum_{k=1}^{\infty} d(x_k, x_{k+1}) < \infty \). Prove that \(x_k \) is a Cauchy sequence.

2. Prove that the function
 \[
 F(x) = \int_{0}^{+\infty} \frac{\cos(x t^2)}{1 + t^2} dt
 \]
 is well defined and is continuous for all \(x \in \mathbb{R} \).

3. Let \(E \subset \mathbb{R}^n \). The function \(f : E \to \mathbb{R} \) is upper semicontinuous at \(x_0 \in E \) if for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(f(x) \leq f(x_0) + \epsilon \) for all \(|x - x_0| < \delta, x \in E \).
 Prove that if \(f \) is upper semicontinuous in \(E \) compact, then \(f \) is bounded above in \(E \).

4. Prove Dini’s theorem: Let \(X \) be a compact topological space. If \(f_n : X \to \mathbb{R} \) is a sequence of continuous functions such that \(f_n(x) \to 0 \) for each \(x \in X \) and \(f_n(x) \geq f_{n+1}(x) \) for all \(x \) and \(n \), then \(f_n \to 0 \) uniformly in \(X \).
 HINT: for \(\epsilon > 0 \) consider \(F_n = \{ x \in X : f_n(x) < \epsilon \} \).

Part II. (Do 2 problems)

1. Let \(f \in L^1(E) \). Prove that for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for any \(A, B \subset E \) measurable with \(|A \triangle B| < \delta \) we have
 \[
 \left| \int_{A} f(x) \, dx - \int_{B} f(x) \, dx \right| < \epsilon.
 \]

2. Suppose \(f_k \to f \) a.e. on \(\mathbb{R}^n \), \(f_k \) measurable. Prove that for each \(\epsilon > 0 \) there exist a sequence of disjoint measurable sets \(E_j \) of finite measure such that \(|\mathbb{R}^n \setminus \bigcup_{j=1}^{\infty} E_j| < \epsilon \) and \(f_k \to f \) uniformly on each \(E_j \).

3. Let \(0 < p \leq q < \infty \), \(f \in L^q(X, \mu) \), and \(E \subset X \) with \(0 < \mu(E) < \infty \). Prove that
 \[
 \left(\frac{1}{\mu(E)} \int_{E} |f(x)|^p \, d\mu(x) \right)^{1/p} \leq \left(\frac{1}{\mu(E)} \int_{E} |f(x)|^q \, d\mu(x) \right)^{1/q}.
 \]