2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018
Current contact: Rebekah Palmer and Timothy Morris
The seminar takes place on Fridays (from 2:30-3:30pm) in Room 617 on the sixth floor of Wachman Hall. Pizza and refreshments are available beforehand in the lounge next door.
Luca Pallucchini, Temple University
Ben Stucky, University of Oklahoma
James Rosado, Temple University
Brandi Henry, Temple University
Khánh Lê, Temple University
Tantrik Mukerji, Temple University
Speaker: TBA
Thomas Ng, Temple University
Zach Cline, Temple University
Narek Hosyepyan, Temple University
We will discuss some interpolation formulae, such as Pick interpolation, recovery formulae for analytic functions from pieces of their boundary or interior data, and some aspects of the question of their extrapolation.
Yilin Wu, Temple University
Bacterial biofilms are defined as clusters of bacterial cells living in the self-produced extracellular polymeric substances (EPS), and always attached to various kinds of surfaces, such as tissues, solid surfaces, or cells. Biofilms can be formed of a population that developed from a single species or a community derived from multiple microbial species. I will give a brief introduction to the biofilm living environment on marble with a mathematical approach.
Tim Morris, Temple University
We present John Conway's proof of the classification of surfaces. This proof, is considered by many to capture the essence an simplicity of purely topological arguments. So, naturally we will include many pictures to help aid our intuition. This talk will be accessible for all graduate students.
We will be doing introductions for the new grad students, have a small presentation from TUGSA, playing board games, and eating pizza!
Sunny Yang Xiao, Brown University
Luca Pallucchini, Temple University
Geoff Schneider
Rebekah Palmer, Temple University
In 1843, Hamilton carved "$i^2=j^2=k^2=ijk=-1$" into a bridge in Dublin after a spark of inspiration while on a walk. His original intention was to make the complex numbers $\mathbb{C}$ more complex (it worked). The restriction to $-1$ has since then been loosened in favor of generalization, known as quaternion algebras. We'll explore some introductory facts and see how these constructions occur in geometry.
Khanh Le, Temple University
Narek Hovsepyan, Temple University
It is shown that the eigenvalues of an analytic kernel on a finite interval go to zero at least as fast as $R^{ - n} $ for some fixed $R < 1$. The best possible value of R is related to the domain of analyticity of the kernel. The method is to apply the Weyl–Courant minimax principle to the tail of the Chebyshev expansion for the kernel. An example involving Legendre polynomials is given for which R is critical.
Reference - G. Little, J. B. Reade, Eigenvalues of analytic kernels , SIAM J. Math. Anal., 15(1), 1984, 133–136.
Thomas Ng, Temple University
Kathryn Lund, Temple University
Thomas Ng, Temple University
We will describe a model introduced by Bollob\'as for random finite k-regular graph. In the case when k=3, we will discuss connections with two constructions of random Riemann surfaces introduced by Buser and Brooks-Makover. Along the way, we will see a glimpse of the space of metrics on a surface (Teichmuller space) and (ideal) triangulations.
Zachary Cline, Temple University
There is a cool construction of a variant of this polynomial which is instructive and which anyone remotely interested in knot theory should see at least once in their life. I will present this construction and then explain how this polynomial invariant arises as a functor from the tangle category to the category of vector spaces over $C$.