2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019
The colloquium typically meets Mondays at 4:00 PM in Room 617 on the sixth floor of Wachman Hall.
The colloquium is preceded by tea starting at 3:30 in the Faculty Lounge, adjacent to Room 617. Click on title for abstract.
Ofer Zeitouni, Weizmann Institute and Courant Institute, NYU
David Harbater, University of Pennsylvania
TBA
Lisa Fauci, Tulane University
Respiratory cilia that transport mucus in the lungs, spermatozoa that collectively move through the female reproductive tract, paddling appendages that propel a crawfish, and fish swimming in a school are all examples of oscillators that exert force on a surrounding fluid. Do the synchronous or phase-shifted periodic motions that we observe arise due to hydrodynamic coupling? We will discuss experiments and models of the self-organized pattern of beating flagella and cilia — from minimal models of colloidal particles driven by optical traps to more detailed models that include dynamics of the molecular motors driving the motion. We will also examine the role of fluid inertia on the dynamics of synchronization of such systems.
John Bush, MIT
Yves Couder and coworkers in Paris discovered that droplets walking on a vibrating fluid bath exhibit several features previously thought to be exclusive to the microscopic, quantum realm. These walking droplets propel themselves by virtue of a resonant interaction with their own wavefield, and so represent the first macroscopic realization of a pilot-wave system of the form proposed for microscopic quantum dynamics by Louis de Broglie in the 1920s. New experimental and theoretical results allow us to rationalize the emergence of quantum-like behavior in this hydrodynamic pilot-wave system in a number of settings, and explore its potential and limitations as a quantum analog.
Marta Lewicka, University of Pittsburgh
We discuss some mathematical problems combining geometry and analysis, that arise from the description of elastic objects displaying heterogeneous incompatibilities of strains. These strains may be present in bulk or in thin structures, may be associated with growth, swelling, shrinkage, plasticity, etc. We will describe the effect of such incompatibilities on the singular limits' bidimensional models, in the variational description pertaining to the "non-Euclidean elasticity" and discuss the interaction of nonlinear PDEs, geometry and mechanics of materials in the prediction of patterns and shape formation.
Todd Kemp, UCSD
Random Matrix Theory has become one of the hottest fields in probability and applied mathematics. With deep connections to analysis, combinatorics, and even number theory and representation theory, in the age of big data it is also finding its place at the heart of data science.
The field has largely focused on two kinds of generalizations of Gaussian random matrices, either preserving entry-wise independence or preserving rotational invariance. From another point of view, however, the classical Gaussian matrix ensembles can be viewed as Brownian motion on Lie algebras, and this Lie structure goes a long way in explaining some of their known fine structure. This suggests a third, geometric generalization of these ensembles to study: Brownian motion on the corresponding matrix Lie groups.
In this lecture, I will discuss the state of the art in our understanding of the behavior of eigenvalues of Brownian motion on Lie groups, focusing on unitary groups and general linear groups. No specialized background knowledge is required. There will be lots of pictures.
Marius Mitrea, University of Missouri
In this talk I will discuss, in a methodical manner, the process that lets us consider singular integral operators of boundary layer type in a given compact Riemannian manifold M, and then use these to solve boundary value problems in subdomains of M of a general nature, best described in the language of Geometric Measure Theory. The talk is intended for a general audience, and it only requires a basic background in analysis.
Lauren Williams, Harvard University
The asymmetric simple exclusion process (ASEP) is a model of particles hopping on a one-dimensional lattice, subject to the condition that there is at most one particle per site. This model was introduced in 1970 by biologists (as a model for translation in protein synthesis) but has since been shown to display a rich mathematical structure. There are many variants of the model – e.g. the lattice could be a ring, or a line with open boundaries. One can also allow multiple species of particles with different “weights.” I will explain how one can give combinatorial formulas for the stationary distribution using various kinds of tableaux. I will also explain how the ASEP is related to interesting families of orthogonal polynomials, including Askey-Wilson polynomials, Koornwinder polynomials, and Macdonald polynomials. Based on joint work with Sylvie Corteel (Paris) and Olya Mandelshtam (Brown).
Christian Schafmeister, Department of Chemistry, Temple University
My group has developed a radical new approach to creating large, complex molecules to carry out complex catalytic and molecular recognition functions that will work like enzymes and membrane channels but be more robust and “designable” (see inset figure). Our approach is to synthesize stereochemically pure cyclic building blocks (bis-amino acids) that we couple through pairs of amide bonds to create spiro-ladder oligomers with programmed shapes (molecular Lego). The shape of each molecular Lego structure is pre-organized and controlled by the sequence and stereochemistry of its component bis-amino acids. We are scaling up molecular Lego both in quantity and size to achieve molecular Lego structures that approach the size of small proteins whereupon they will unlock new capabilities. They will display complex three-dimensional structures and present pockets and complex surfaces (1,500 – 5,000 Daltons). We have developed a computer programming environment called Cando that enables the rational design of molecular Lego structures for catalytic and molecular recognition capabilities. I will describe our approach to molecular Lego and several applications of functionalized molecular Lego including catalysis to carry out C-H activation, hydrolyze nerve agents and stereochemically controlled poly-ester polymerization reactions. I will also describe our approach to developing atomically precise membranes to carry out separations with high flux and selectivity. I will also demonstrate how we are using our unique computational tools to design large, complex macromolecules and materials with catalytic and separation capabilities.
Ilya Kapovich, CUNY
The problem of counting closed geodesics of bounded length, originally in the setting of negatively curved manifolds, goes back to the classic work of Margulis in 1960s about the dynamics of the geodesic flow. Since then Margulis' results have been generalized to many other contexts where some whiff of hyperbolicity is present. Thus a 2011 result of Eskin and Mirzakhani shows that for a closed hyperbolic surface S of genus $g\ge 2$, the number $N(L)$ of closed Teichmuller geodesics of length $\le L$ in the moduli space of $S$ grows as $e^{hL}/(hL)$ where $h=6g-6$. The number $N(L)$ is also equal to the number of conjugacy classes of pseudo-Anosov elements $\phi$ in the mapping class group $MCG(S)$ with $\log\lambda(\phi)\le L$, where $\lambda(\phi)>1$ is the "dilation" or "stretch factor" of $\phi$.
We consider an analogous problem in the $Out(F_r)$ setting, for the action of $Out(F_r)$ on a "cousin" of Teichmuller space, called the Culler-Vogtmann outer space $X_r$. In this context being a "fully irreducible" element of $Out(F_r)$ serves as a natural counterpart of being pseudo-Anosov. Every fully irreducible $\phi\in Out(F_r)$ acts on $X_r$ as a loxodromic isometry with translation length $\log\lambda(\phi)$, where again $\lambda(\phi)$ is the stretch factor of $\phi$. We estimate the number $N_r(L)$ of fully irreducible elements $\phi\in Out(F_r)$ with $\log\lambda(\phi)\le L$. We prove, for $r\ge 3$, that $N_r(L)$ grows doubly exponentially in $L$ as $L\to\infty$, in terms of both lower and upper bounds. These bounds reveal new behavior not present in classic hyperbolic dynamical systems. The talk is based on a joint paper with Catherine Pfaff.
Ioannis Karatzas, Columbia University
We introduce models for financial markets and, in their context, the notions of portfolio rules and of arbitrage. The normative assumption of absence of arbitrage is central in the modern theories of mathematical economics and finance. We relate it to probabilistic concepts such as "fair game", "martingale", "coherence" in the sense of deFinetti, and "equivalent martingale measure".
We also survey recent work in the context of the Stochastic Portfolio Theory pioneered by E.R. Fernholz. This theory provides descriptive conditions under which opportunities for arbitrage, or outperformance, do exist; then constructs simple portfolios that implement them. We also explain how, even in the presence of such arbitrage, most of the standard mathematical theory of finance still functions, though in somewhat modified form.
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019