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Aim and Plan

1 AIM: To explain and illustrate some old and some new results on
the representation theory of algebras satisfying a polynomial
identity.

2 PLAN:

Objects of study
Classical PI theory
Traces and discriminant ideals
Main result
Main result - idea of proof
Final comments
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Objects of study

Assume throughout that the following hypothesis (H) is in force:

k is an algebraically closed field;

R is a prime affine k-algebra which is a finite module over its
centre Z (R).

Then Z (R) is an affine domain, so that R is noetherian and embeds
in its classical quotient ring Q(R), a central simple algebra. So

R ⊆ Q(R) = R ⊗Z(R) Q(Z (R)),

with
dimQ(Z(R))Q(R) = n2.

The integer n is the PI-degree of R .
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Objects of study (A)

AIM: Describe all simple R-modules.

Example

Extreme case: R = Z (R). So R = k〈y1, . . . , yt〉, an affine
commutative domain, and

{(Isom. classes of) simple R −modules} ≈ MaxspecR ,

and, for all simple R-modules V ,

dimk(V ) = 1.
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Objects of study (B)

Example
Let Z be a commutative affine domain, let m be a positive integer,
and let R = Mm(Z ), m ×m matrices over Z = Z (R).

If V is a
simple R-module, then

Vm = 0

for a maximal ideal m of Z , by the Nullstellensatz. So V is a simple
module for R/mR ∼= Mm(k).Thus

{(Isom. classes of) simple R −modules} ≈ Maxspec(Z ),

and
dimk(V ) = m.
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Objects of study (C)

Example

Let T = M2(k[X ,Y ]), and let R be the subalgebra

R :=

(
k[X ,Y ] 〈X ,Y 〉
k[X ,Y ] k[X ,Y ]

)
of T .

So Z (R) = k[X ,Y ], and for every maximal ideal
ma,b := 〈X − a,Y − b〉 of k[X ,Y ] except m0,0,

R/ma,bR ∼= M2(k).
So ∃ unique simple R-module V with Vma,b = 0, and

dimk(V ) = 2.
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Objects of study (C), continued.

Example
But there are 2 maximal ideals of R containing m0,0, namely

P :=

(
〈X ,Y 〉 〈X ,Y 〉
k[X ,Y ] k[X ,Y ]

)
and Q :=

(
k[X ,Y ] 〈X ,Y 〉
k[X ,Y ] 〈X ,Y 〉

)
.

Hence R/P and R/Q are simple R-modules of dim 1.

We’ll see that this pattern is typical.....
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Classical PI theory

Theorem
Assume R satisfies (H), (so that PI− degreeR = n.

1 Every simple R-module V has dimk(V ) ≤ n, and Vm = 0 for
some maximal ideal of Z (R) := Z.

2 For a maximal ideal m of Z (R), there exist t simple R-modules
V with Vm = 0,where 1 ≤ t ≤ n.

3 Define

A(R) := {m ∈ Maxspec(Z ) : ∃V simple,Vm = 0, dimkV = n}.

Then A(R) is a non-empty open (hence dense) subset of
Maxspec(Z (R)).

4 m ∈ A(R)⇔ R/mR ∼= Mn(k)⇔ R/mR semisimple.
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Classical PI theory

A(R) is called the Azumaya locus of R .

Above results due to Kaplansky, De Concini, Procesi, Posner,
Small,....

The theorem suggests an obvious strategy to classify the simple
R-modules when R satisfies (H):

(1) Identify the Azumaya locus.

(2) Describe the non-Azumaya simple modules.

We’ll focus on (1) in the rest of the talk.
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Traces and discriminant ideals

Definition
Assume R satisfies (H). A trace map tr : R −→ Z (R) is a map which

1 is Z (R)-linear;

2 is non-zero;

3 satisfies the trace property, tr(ab) = tr(ba) for all a, b ∈ R .
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Traces and discriminant ideals

Example

The reduced trace, trred:

Recall that Q(R) = R ⊗Z(R) Q(Z (R)). Let
F be a splitting field for Q(R) - that is, F is a finite extension field of
Q(Z (R)) such that

R ⊗Z(R) F ∼= Mn(F ).

Define trred to be the composition

R ↪→ R ⊗Z(R) Q(Z (R)) ↪→ R ⊗Z(R) F ∼= Mn(F )
tr−→ F ,

where tr denotes the usual matrix trace.

The reduced trace is a trace in sense of our definition if Z (R) is
normal. More on this later.
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Traces and discriminant ideals

Definition
(Ceken, Palmierie, Wang, Zhang, Advances 2016)

Assume R satisfies
(H), tr is a trace map on R , and m ∈ Z≥1.The modified
m-discriminant ideal is

MDm(R , tr) := 〈det[tr(yiy ′j )] : (y1, . . . ym), (y ′1, . . . , y
′
m) ∈ Rm〉,

an ideal of Z (R).

Lemma

Suppose R satisfies (H), with R =
∑t

i=1 Z (R)bi .Then

MDm(R , tr) = 〈det[tr(yiy ′j )] : yi , y
′
j ∈ {b1, . . . , bt}〉.
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Traces and discriminant ideals

Examples
1 MD1(R , tr) = 〈tr(R)〉.

2 If R =
∑t

i=1 Z (R)bi and m > t, then MDm(R , tr) = {0}.
3 If m > n2, then MDm(R , tr) = {0}.
4 If R is Z (R)-free on basis {b1, . . . , bn2}, then

MDn2(R , tr) = 〈det[tr(bibj)]〉, a principal ideal of Z (R).

5 If

R :=

(
k[X ,Y ] 〈X ,Y 〉
k[X ,Y ] k[X ,Y ]

)
,

then MD4(R , trred) = 〈X ,Y 〉.

The last example is very suggestive....
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Main result

Notation
For an ideal I of a commutative affine domain Z ,

V(I ) := {m ∈ Maxspec(Z ) : I ⊆ m}.

Theorem
(B-Yakimov, arXiv1702.04305) Suppose that R satisfies (H), so R
has PI-degree n, and that Z (R) is normal. Then

V(MDn2(R , trred)) = Maxspec(Z (R)) \ A(R).
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Main result - idea of proof

Definition
1 Let R satisfy (H). A trace map tr : R → Z (R) is representation

theoretic if for all m ∈ Maxspec(Z (R)) there exists a non-trivial
finite dimensional R/mR-module Wm and a scalar sm ∈ k∗ (both
depending on m) such that the following diagram commutes:

R
tr−−−→ Z (R)y y

R/mR
smtrWm−−−−→ Z (R)/m ∼= k .

2 Say tr is almost rep. theoretic if the above holds with sm ∈ k ,
but sm ∈ k∗ whenever R/mR is simple.
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Main result - idea of proof

Proposition

Let R satisfy (H), with Z (R) normal.

1 If chark = 0 or chark > n then trred is rep.theoretic.

2 trred is almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for PI rings, 1985].

Given a trace tr : B −→ k , B a finite dim. algebra, we can define a
trace form

〈−,−〉 : B × B −→ k : 〈u, v〉 = tr(uv).

Call the form nondegenerate if 〈u,B〉 = 0 only for u = 0.
The kernel {u ∈ B : 〈u,B〉 = 0} of the form is an ideal of B ; so if B
is simple then the form is nondegenerate.
In this case, for basis {b1, . . . , bt} of B , det[tr(bibj)]t×t 6= 0.
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Main result - idea of proof

The above shows that, if m ∈ A(R), that is, if R/mR ∼= Mn(k), then
MDn2(R , trred) * m.

Conversely, suppose m ∈ MaxspecZ (R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if sm 6= 0);
or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace
form, on R/mR/J(R/mR).
But dimk(R/mR/J(R/mR)) < n2, using results of Braun again.
So MDn2(R , trred) ⊆ m.

In case (2), the same conclusion is trivially true.

This proves the Main Theorem.
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Final comments

1 The idea of using the nondegeneracy of a trace form to test for
semisimplicity of a finite dimensional algebra goes back to
Weierstrass (1884) in the commutative case and to Molien
(1894) in general.

2 There is an another characterisation of the (non)-Azumaya
locus, in terms of the singular locus of Z (R), due to
[B-Goodearl, J Algebra, 1997]. This requires homological
hypotheses which were weakened in [B-MacLeod, Algebras and
Rep. Theory, 2017].

3 There is scope for many applications of the Main Theorem - see
eg [B-Y, loc cit] for R a quantised Weyl algebra; and (in the
“opposite direction” - from rep. theory to the (radical of) the
discriminant ideal in [Walton, Wang, Yakimov,
arXiv1704.04975].

4 Thanks!
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