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Aim and Plan

@ AIM: To explain and illustrate some old and some new results on
the representation theory of algebras satisfying a polynomial
identity.

@ PLAN:

Objects of study

Classical Pl theory

Traces and discriminant ideals
Main result

Main result - idea of proof
Final comments
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Objects of study

Assume throughout that the following hypothesis (H) is in force:
@ k is an algebraically closed field;

@ R is a prime affine k-algebra which is a finite module over its
centre Z(R).
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Objects of study

Assume throughout that the following hypothesis (H) is in force:
@ k is an algebraically closed field;

@ R is a prime affine k-algebra which is a finite module over its
centre Z(R).

Then Z(R) is an affine domain,
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Assume throughout that the following hypothesis (H) is in force:
@ k is an algebraically closed field;

@ R is a prime affine k-algebra which is a finite module over its
centre Z(R).

Then Z(R) is an affine domain, so that R is noetherian and embeds
in its classical quotient ring Q(R), a central simple algebra.
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Objects of study

Assume throughout that the following hypothesis (H) is in force:
@ k is an algebraically closed field;

@ R is a prime affine k-algebra which is a finite module over its
centre Z(R).

Then Z(R) is an affine domain, so that R is noetherian and embeds
in its classical quotient ring Q(R), a central simple algebra. So

R C QR) = R®zgr QZ(R)),

with
dimQ(Z(R)) Q(R) = n2.

The integer n is the Pl-degree of R.
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Objects of study

AIM: Describe all simple R-modules.
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Objects of study

AIM: Describe all simple R-modules.

Extreme case: R = Z(R).
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AIM: Describe all simple R-modules.

Extreme case: R = Z(R). So R = k{(y1,...,¥:), an affine
commutative domain,
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Objects of study

AIM: Describe all simple R-modules.

Extreme case: R = Z(R). So R = k{(y1,...,¥:), an affine
commutative domain, and
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Objects of study

AIM: Describe all simple R-modules.

Extreme case: R = Z(R). So R = k{(y1,...,¥:), an affine
commutative domain, and

{(Isom. classes of) simple R — modules} ~ MaxspecR,

and, for all simple R-modules V/,
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Objects of study

Let Z be a commutative affine domain, let m be a positive integer,
and let R = M,,(Z), m x m matrices over Z = Z(R).
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Objects of study

Example
Let Z be a commutative affine domain, let m be a positive integer,
and let R = M,,(Z), m x m matrices over Z = Z(R). If V is a

simple R-module, then

Vm =0

for a maximal ideal m of Z, by the Nullstellensatz.
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Objects of study

Example
Let Z be a commutative affine domain, let m be a positive integer,
and let R = M,,(Z), m x m matrices over Z = Z(R). If V is a
simple R-module, then

Vm =0
for a maximal ideal m of Z, by the Nullstellensatz. So V is a simple
module for R/mR = M,,(k).
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Objects of study

Example

Let Z be a commutative affine domain, let m be a positive integer,
and let R = M,,(Z), m x m matrices over Z = Z(R). If V is a
simple R-module, then

Vm =0

for a maximal ideal m of Z, by the Nullstellensatz. So V is a simple
module for R/mR = M,,(k).Thus

{(Isom. classes of) simple R — modules} ~ Maxspec(Z),

and
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Objects of study

Let T = My(k[X, Y]), and let R be the subalgebra

KX, Y] (XY
r= (k%x, il A% Y>1>

of T.

Kenny Brown (University of Glasgow) Azumaya loci /18



Objects of study

Let T = My(k[X, Y]), and let R be the subalgebra

KX, Y] (XY
r= (k%x, il A% Y>1>

of T. So Z(R) = k[X, Y],
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Objects of study

Let T = My(k[X, Y]), and let R be the subalgebra

KX, Y] (XY
r= (k%x, il A% Y>1>

of T. So Z(R) = k[X, Y], and for every maximal ideal
m,p = (X —a,Y — b) of k[X, Y] except mgp,
R/m,pR = My(k).
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Objects of study

Let T = My(k[X, Y]), and let R be the subalgebra

KX, Y] (XY
r= (k%x, il A% Y>1>

of T. So Z(R) = k[X, Y], and for every maximal ideal

m,p = (X —a,Y — b) of k[X, Y] except mgp,
R/m,pR = Mo(k).

So 3 unique simple R-module V' with Vm,, = 0, and
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Objects of study  , continued.

But there are 2 maximal ideals of R containing mg o, namely

b (<x, Y) (X, Y)) ) (k[X, Y] (X, Y>).

k[X,Y] k[X,Y] kX, Y] (X,Y)
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Objects of study  , continued.

But there are 2 maximal ideals of R containing mg o, namely

b (<x, Y) (X, Y)) ) (k[X, Y] (X, Y>).

k[X,Y] k[X,Y] kX, Y] (X,Y)

Hence R/P and R/Q are simple R-modules of dim 1.
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Objects of study  , continued.

Example
But there are 2 maximal ideals of R containing mg o, namely

_ (X)) (XY) _ (KX, Y] (XY)
Pi= (k[X, Y] K[X, Y]) e () 3= (k[X, Y] (X,Y)

Hence R/P and R/Q are simple R-modules of dim 1.

)

We'll see that this pattern is typical.....
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Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.

Kenny Brown (University of Glasgow) Azumaya loci /18



Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.

Q Every simple R-module V has dim, (V) < n, and Vm = 0 for
some maximal ideal of Z(R) := Z.
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Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.

Q Every simple R-module V has dim, (V) < n, and Vm = 0 for
some maximal ideal of Z(R) := Z.

@ fFor a maximal ideal m of Z(R), there exist t simple R-modules
V with Vm =0,

Kenny Brown (University of Glasgow) Azumaya loci /18



Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.

Q Every simple R-module V has dim, (V) < n, and Vm = 0 for
some maximal ideal of Z(R) := Z.

@ fFor a maximal ideal m of Z(R), there exist t simple R-modules
V with Vm = 0,where 1 < t < n.
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Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.
Q Every simple R-module V has dim, (V) < n, and Vm = 0 for
some maximal ideal of Z(R) := Z.

@ fFor a maximal ideal m of Z(R), there exist t simple R-modules
V with Vm = 0,where 1 < t < n.

© Define
A(R) := {m € Maxspec(Z) : 3V simple, Vm = 0,dim,V = n}.

Then A(R) is a non-empty open (hence dense) subset of
Maxspec(Z(R)).
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Classical PI theory

Assume R satisfies (H), (so that P1 — degreeR = n.

Q Every simple R-module V has dim, (V) < n, and Vm = 0 for
some maximal ideal of Z(R) := Z.

@ fFor a maximal ideal m of Z(R), there exist t simple R-modules
V with Vm = 0,where 1 < t < n.

© Define
A(R) := {m € Maxspec(Z) : 3V simple, Vm = 0,dim,V = n}.

Then A(R) is a non-empty open (hence dense) subset of
Maxspec(Z(R)).
QO me A(R) & R/mR = M,(k) & R/mR semisimple.
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Classical Pl theory

A(R) is called the Azumaya locus of R.
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Classical Pl theory

A(R) is called the Azumaya locus of R.

Above results due to Kaplansky, De Concini, Procesi, Posner,
Small,....
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Classical Pl theory

A(R) is called the Azumaya locus of R.

Above results due to Kaplansky, De Concini, Procesi, Posner,
Small,....

The theorem suggests an obvious strategy to classify the simple
R-modules when R satisfies (H):

(1) Identify the Azumaya locus.
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R-modules when R satisfies (H):
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Classical PI theory

A(R) is called the Azumaya locus of R.

Above results due to Kaplansky, De Concini, Procesi, Posner,
Small,....

The theorem suggests an obvious strategy to classify the simple
R-modules when R satisfies (H):

(1) Identify the Azumaya locus.

(2) Describe the non-Azumaya simple modules.

We'll focus on (1) in the rest of the talk.
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Traces and discriminant ideals
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Traces and discriminant ideals

Definition

Assume R satisfies (H). A trace map tr : R — Z(R) is a map which
Q is Z(R)-linear;
@ is non-zero;
@ satisfies the trace property, tr(ab) = tr(ba) for all a,b € R.
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Traces and discriminant ideals

The reduced trace, treq:
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Traces and discriminant ideals

The reduced trace, tr,.q: Recall that Q(R) = R ®z(r) Q(Z(R)).
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Traces and discriminant ideals

Example

The reduced trace, tr,q: Recall that Q(R) = R ®z(r) Q(Z(R)). Let
F be a splitting field for Q(R) - that is, F is a finite extension field of
Q(Z(R)) such that

R X z(R) F= M,,(F).
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Traces and discriminant ideals

Example

The reduced trace, tr,q: Recall that Q(R) = R ®z(r) Q(Z(R)). Let
F be a splitting field for Q(R) - that is, F is a finite extension field of
Q(Z(R)) such that

R X z(R) F= M,,(F).

Define tr,.q to be the composition
R < R®zr) Q(Z(R)) = R ®zr) F = M,(F) == F,

where tr denotes the usual matrix trace.
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Traces and discriminant ideals

Example

The reduced trace, tr,q: Recall that Q(R) = R ®z(r) Q(Z(R)). Let
F be a splitting field for Q(R) - that is, F is a finite extension field of
Q(Z(R)) such that

R X z(R) F= M,,(F).

Define tr,.q to be the composition
R < R®zr) Q(Z(R)) = R ®zr) F = M,(F) == F,

where tr denotes the usual matrix trace.

The reduced trace is a trace in sense of our definition if Z(R) is
normal.
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Traces and discriminant ideals

Example

The reduced trace, tr,q: Recall that Q(R) = R ®z(r) Q(Z(R)). Let
F be a splitting field for Q(R) - that is, F is a finite extension field of
Q(Z(R)) such that

R X z(R) F= M,,(F).

Define tr,.q to be the composition
R < R®zr) Q(Z(R)) = R ®zr) F = M,(F) == F,

where tr denotes the usual matrix trace.

The reduced trace is a trace in sense of our definition if Z(R) is
normal. More on this later.
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Traces and discriminant ideals

(Ceken, Palmierie, Wang, Zhang, Advances 2016)
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Traces and discriminant ideals

(Ceken, Palmierie, Wang, Zhang, Advances 2016) Assume R satisfies
(H), tr is a trace map on R, and m € Z>;.
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Traces and discriminant ideals

Definition

(Ceken, Palmierie, Wang, Zhang, Advances 2016) Assume R satisfies
(H), tr is a trace map on R, and m € Z>;.The modified
m-discriminant ideal is

MDy, (R, tr) := (det[tr(y;y;)] : (Y1, - Ym)s W15+ > ¥m) € R™),

an ideal of Z(R).
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Traces and discriminant ideals

Definition

(Ceken, Palmierie, Wang, Zhang, Advances 2016) Assume R satisfies
(H), tr is a trace map on R, and m € Z>;.The modified
m-discriminant ideal is

MDy, (R, tr) := (det[tr(y;y;)] : (Y1, - Ym)s W15+ > ¥m) € R™),

an ideal of Z(R).

Suppose R satisfies (H), with R =", Z(R)b;.
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Traces and discriminant ideals

Definition

(Ceken, Palmierie, Wang, Zhang, Advances 2016) Assume R satisfies
(H), tr is a trace map on R, and m € Z>;.The modified
m-discriminant ideal is

MDy, (R, tr) := (det[tr(y;y;)] : (Y1, - Ym)s W15+ > ¥m) € R™),

an ideal of Z(R).

Suppose R satisfies (H), with R =", Z(R)b;.Then

MDy(R, tr) = (det[tr(yiy;)] : i, yj € {b1, ..., b}).

Kenny Brown (University of Glasgow) Azumaya loci /18



Traces and discriminant ideals

Q@ MDy(R, tr) = (tz(R)).
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Traces and discriminant ideals

Q@ MDi(R, tr) = (tr(R)).
@ If R=t . Z(R)b; and m > t, then MD,(R, tr) = {0}.
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Traces and discriminant ideals

Q@ MD;(R,tr) = (tr(R)).
@ If R="%_ Z(R)b; and m > t, then MD,(R, tr) = {0}.
Q If m > n?, then MD,,(R,tr) = {0}.
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Traces and discriminant ideals

Q@ MD;(R,tr) = (tr(R)).
@ If R="%_ Z(R)b; and m > t, then MD,(R, tr) = {0}.
Q If m > n?, then MD,,(R,tr) = {0}.

@ If Ris Z(R)-free on basis {by,..., by}, then
MD,2(R, tr) = (det[tr(b;b;)]), a principal ideal of Z(R).
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Traces and discriminant ideals

MD; (R, tr) = (tr(R)).
If R =S¢, Z(R)b; and m > t, then MD,(R, tr) = {0}.
If m > n?, then MD,,(R,tr) = {0}.

If R is Z(R)-free on basis {by, ..., by}, then
MD,2(R, tr) = (det[tr(b;b;)]), a principal ideal of Z(R).

! . (k[X, Yl (X, Y)) |

© 0000

k[X,Y] k[X,Y]

Kenny Brown (University of Glasgow) Azumaya loci /18



Traces and discriminant ideals

Q@ MD;(R,tr) = (tr(R)).
If R =S¢, Z(R)b; and m > t, then MD,(R, tr) = {0}.
If m > n?, then MD,,(R,tr) = {0}.

If R is Z(R)-free on basis {by, ..., by}, then

2]
o
o

MD,2(R, tr) = (det[tr(b;b;)]), a principal ideal of Z(R).
of . (k[X, Yl (X, Y))

KIX, Y] K[X,Y]
then MD4(R,tI'red) = <X, Y>
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Traces and discriminant ideals

MD; (R, tr) = (tr(R)).
If R =S¢, Z(R)b; and m > t, then MD,(R, tr) = {0}.
If m > n?, then MD,,(R,tr) = {0}.

If R is Z(R)-free on basis {by, ..., by}, then
MD,2(R, tr) = (det[tr(b;b;)]), a principal ideal of Z(R).

! . (k[X, Yl (X, Y)) |

© 0000

KIX, Y] K[X,Y]
then MD4(R,tI'red) = <X, Y>

The last example is very suggestive....
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Main result

For an ideal | of a commutative affine domain Z,

V(1) := {m € Maxspec(Z) : | C m}.
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Main result

For an ideal | of a commutative affine domain Z,

V(1) := {m € Maxspec(Z) : | C m}.

Theorem

(B-Yakimov, arXiv1702.04305) Suppose that R satisfies (H), so R
has Pl-degree n, and that Z(R) is normal.
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Main result

For an ideal | of a commutative affine domain Z,

V(1) := {m € Maxspec(Z) : | C m}.

Theorem

(B-Yakimov, arXiv1702.04305) Suppose that R satisfies (H), so R
has Pl-degree n, and that Z(R) is normal. Then

V(MD,2(R, tryeq)) = Maxspec(Z(R)) \ A(R).
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Main result - idea of proof
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Main result - idea of proof

Q Let R satisfy (H). A trace map tr: R — Z(R) is representation
theoretic if for all m € Maxspec(Z(R)) there exists a non-trivial
finite dimensional R/mR-module W,, and a scalar s,, € k* (both
depending on m) such that the following diagram commutes:

R — Z(R)

| l

R/mR = Z(R)/m = k.
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Main result - idea of proof

Q Let R satisfy (H). A trace map tr: R — Z(R) is representation
theoretic if for all m € Maxspec(Z(R)) there exists a non-trivial
finite dimensional R/mR-module W,, and a scalar s,, € k* (both
depending on m) such that the following diagram commutes:

R — Z(R)

| l

R/mR = Z(R)/m = k.

@ Say tr is almost rep. theoretic if the above holds with s, € k,
but s, € k* whenever R/mR is simple.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
© /f chark = 0 or chark > n then tr..q is rep.theoretic.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
© /f chark = 0 or chark > n then tr..q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
© /f chark = 0 or chark > n then tr..q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
@ /fchark = 0 or chark > n then tr,.q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].

Given a trace tr : B — k, B a finite dim. algebra, we can define a
trace form

(—,—):BxB—k:{u,v)=tr(uv).
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
@ /fchark = 0 or chark > n then tr,.q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].

Given a trace tr : B — k, B a finite dim. algebra, we can define a
trace form

(—,—):BxB—k:{u,v)=tr(uv).

Call the form nondegenerate if (u, B) = 0 only for u = 0.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
@ /fchark = 0 or chark > n then tr,.q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].

Given a trace tr : B — k, B a finite dim. algebra, we can define a
trace form

(—,—):BxB—k:{u,v)=tr(uv).

Call the form nondegenerate if (u, B) = 0 only for u = 0.
The kernel {v € B : (u, B) = 0} of the form is an ideal of B;
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Main result - idea of proof

Proposition

Let R satisfy (H), with Z(R) normal.
@ /fchark = 0 or chark > n then tr,.q is rep.theoretic.
© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].

Given a trace tr : B — k, B a finite dim. algebra, we can define a
trace form

(—,—):BxB—k:{u,v)=tr(uv).

Call the form nondegenerate if (u, B) = 0 only for u = 0.
The kernel {v € B : (u, B) = 0} of the form is an ideal of B; so if B
is simple then the form is nondegenerate.
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Main result - idea of proof

Proposition
Let R satisfy (H), with Z(R) normal.
@ /fchark = 0 or chark > n then tr,.q is rep.theoretic.

© tr..q /s almost rep. theoretic for all fields k.

Depends crucially on [Braun, Additivity principle for Pl rings, 1985].

Given a trace tr : B — k, B a finite dim. algebra, we can define a
trace form

(—,—):BxB—k:{u,v)=tr(uv).

Call the form nondegenerate if (u, B) = 0 only for u = 0.

The kernel {v € B : (u, B) = 0} of the form is an ideal of B; so if B
is simple then the form is nondegenerate.

In this case, for basis {by,..., b} of B, det[tr(b;b;)]:«: # 0.
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Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.
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Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R).
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Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
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Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
or (2) the “trace” and trace form induced on R/mR are 0.
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Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);

or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace
form, on R/mR/J(R/mR).

Kenny Brown (University of Glasgow) Azumaya loci /18



Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace

form, on R/mR/J(R/mR).
But dim,(R/mR/J(R/mR)) < n?, using results of Braun again.

Kenny Brown (University of Glasgow) Azumaya loci /18



Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace
form, on R/mR/J(R/mR).

But dim,(R/mR/J(R/mR)) < n?, using results of Braun again.

So MD,2(R, tryeq) C m.

Kenny Brown (University of Glasgow) Azumaya loci /18



Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace
form, on R/mR/J(R/mR).

But dim,(R/mR/J(R/mR)) < n?, using results of Braun again.

So MD,2(R, tryeq) C m.

In case (2), the same conclusion is trivially true.

Kenny Brown (University of Glasgow) Azumaya loci /18



Main result - idea of proof

The above shows that, if m € A(R), that is, if R/mR = M,(k), then
MD,2(R, trreq) € m.

Conversely, suppose m € MaxspecZ(R) \ A(R). Then either (1) the
induced trace on R/mR is rep. theoretic ( if s, # 0);
or (2) the “trace” and trace form induced on R/mR are 0.

In case (1), we show that there is then an induced trace, and so trace
form, on R/mR/J(R/mR).

But dim,(R/mR/J(R/mR)) < n?, using results of Braun again.

So MD,2(R, tryeq) C m.

In case (2), the same conclusion is trivially true.

This proves the Main Theorem.
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© The idea of using the nondegeneracy of a trace form to test for
semisimplicity of a finite dimensional algebra goes back to
Weierstrass (1884) in the commutative case and to Molien
(1894) in general.
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locus, in terms of the singular locus of Z(R), due to
[B-Goodearl, J Algebra, 1997]. This requires homological
hypotheses which were weakened in [B-MacLeod, Algebras and
Rep. Theory, 2017].

© There is scope for many applications of the Main Theorem - see
eg [B-Y, loc cit] for R a quantised Weyl algebra; and (in the
“opposite direction” - from rep. theory to the (radical of) the
discriminant ideal in [Walton, Wang, Yakimov,
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@ Thanks!

Kenny Brown (University of Glasgow) Azumaya loci /18



